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. I. Introduction
H The possidbility of using betatrons to accelerate high current electron
1 ° beams to high energy has generated renewed interest in these devices. If

successful, they will provide a source of high power beams which is much
more compact and economical than 1inear machines. In order to overcome the
space charge repulsion which 1imits current in the conventional betatron,!
8 toroidal magnetic field is added. This combination, shown in Fig. 1, is
® the Modified Betatron Accelerator (MBA). Successful operation of the modi-
fied betatron requires (a) the ability to inject a high current (-10 kA)
of low energy (-2 MeV) electrons onto a cyclotron orbit in the presence
‘ of a strong (1-5 kG) toroidal magnetic field; (b) a stable beam equilibrium
® for the duration of the acceleration period, typically thousands of revolu-
tions; and (c) extraction of the beam, which has been accelerated to high
energy (-50 MeV), preferably in a time equal to one rotation period. If
instabilities are present, their cumulative effect must be small enough
L such that macroscopic disruption of the beam is minimal.

o 2l

RN

During the period of our contract with the Office of Naval Research
(ONR) (1 Sept 81 - 31 Oct 83), we concentrated primarily on requirement
® (b), with some work being done on (a). This choice was made after consid-
eration of what was of most relevance to the overall modified betatron pro-
gram and consideration of where we could make the greatest contributions.
The existence of a stable, or at any rate confined, state for the beam over
® many ctirculation periods 1is the minimal requirement for the MBA. In addi-
N tion, this subject can be addressed with confidence using a combination of
' analytical and numerical techniques which serve as a check on each other.
For the issue of injection, one must rely on three-dimensional numerical
P simulations alone. A number of such simulations were performed under this
contract, but their expense was such that & detailed study of injection was
not feasidble with the computing resources available. Concerning the issue
of beam extraction, it was felt that it would be premature to start work
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on this subject, given the uncertainty relating to requirements (a) and
(b). Also, there are several uses for the modified betatron which would
not necessarily require extraction of the beam, e.g., microwave and free-
electron laser applications.

This report describes in detail the work we have done. In Chapter Il
we give the results obtained from one-turn injection simulations of the
scheme ia which the diode is placed inside the torus. In Chapter 11l we
describe investigations into different types of beam equilibria and how
these equilibria are affected by the addition of a spread in energy or
increased transverse emittance to the beam. In Chapter IV the results of
extensive analytic and numerical investigations into beam stability are
presented. The main emphasis here is on the negative mass instability, but
we have also done calculations on resistive wall and beam breakup instabil-
jties. The latter occurs in devices in which the beam passes through
acceleration gaps. In the modified betatron, injection and extraction
ports, and slots to enhance magnetic flux diffusion into the torus can give
rise to the same type of instability. Chapter V gives our main conclus-
jons.
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I11. Beam Injection

Injection of a high current beam into the modified betatron is compli-
cated by the presence of the toroidal magnetic field. The simplest way to
overcome the problem is to place the diode inside the torus, and inject
along the toroidal field lines.? An alternative scheme is to have the
diode outside the torus and to inject along temporarily open field lines.?
We have looked only at the first scheme.

In the modified betatron the equilibrium radial position of the beam
centroid, r¢, is determined by equating the centrifugal force to the
opposing force from the self and applied field, i.e., yvez/rc =
E:eIf + vy (B:Xt + B:e‘f), where y is the beam energy and Vg is the tor-
oidal velocity. (We are using units in whichm = c = 1,) As shown by
Kapetanakos et al.? there is a convenient cancellation of the space-charge

depression of the injection energy Y4 by the toroidal correction to the

self
Bz

self magnetic field o« As a result, the equilibrium radius is given

simply by r, = 713/8‘;Xt , where B = (1-1/y2)1/2, This result was con-
firmed by a three-dimensional PIC simulation using IVORY.* In this study,
a pulse was injected into a torus of major radius ro = 1 m, The coordin-
ate system used was cylindrical, r, 6, 2, where the z-axis coincided with
the major axis of the torus, and 6 was the toroidal angle (Fig. 1). Two
cases were studied, one in which injection took place at r = rg, 2 = 0, 6
= 0 (centered-injection case) and one jon in which injection was at r =
ro+4cm, 2=0, 6 =0 (offset-injection case). The injected pulse had

a radius of 2 cm and had a trapezoidal time profile of current 1 and energy
Y. Over the first 5 ns, the current rose from I=0 to 10 kA, and energy
went from vy = 2 to 5. This was followed by a 10 ns "body" in which I = 10
kA, vy = 5 and finally by a 5 ns tail which was the mirror image of the
head. These values for y are the space-charge depressed values. The
fnjection energy yq was larger: vy = 7 in the body of the pulse. The
applied By and B, fields were modeled by the required curl-free forms.>
The values of B; and the external field index n were chosen to ensure

that the mein body of the beam followed a stable orbit which did not




intersect the wall. The results of a centered-injection case in which the

beam was initially cold are shown in Fig. 2. In this simulation, we chose
n =025 B, (r = ry) =114 kG and Bg (r = r,) = 3 kG. When com-

bined with the value of Yi» this yields a predicted equilibrium radius

of 100 cm. The body of the pulse in fact propagated quiescently through
the first turn (which is as far as the simulation ran) at exactly this rad-
jus. Figure 2 shows that the head of the pulse is drifted into the upper
wall at z = 8,9 cm. This is due to the fact that in the head (and tail) we
did not have radial force balance because of the lower value of y. As a
result, there was a net radial force Fr on the particles causing an F,

x Bg drift in the z-direction. The resulting deposition of energy on the
wall may create plasma leading to vacuum degradation and possibly an ion
resonance instability of the beam.® However, serious damage to the wall is
not expected, since the point where the beam contacts the wall moves along
with v » ¢. The area of contact is about rpae aAr = 30x4.5 cm?,

In the offset injection case the centroid of the beam was injected at
r = 104 cm and the applied vertical field was 112 G. The injection energy
Yy was the same as before, so that the theoretically predicted equilib-
rium radius is re = 105 cm. As seen in Fig. 3, the body of the pulse
propagated around the torus at about this radius. We conclude that a large
radial offset in the injection does not adversely affect beam propagation

or beam quality.
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11I1. Beam Equilibrium

During a hypothetical 1 millisecond acceleration time in a 1 m radius
betatron, the beam circulates about 48,000 times. It is therefore essen-
tial to have accessible self-consistent equilibria for the beam. In
analytic and numerical work, such equilibria form the starting point for

ﬁéf the study of beam stability. The most detailed and exact calculations of
‘ﬁf beam equilibria to date have been carried out by Finn and Manheimer,” using
>~ a cold-fluid model of the beam. Their results show that self-consistent
'§§l equilibria do in fact exist in the parameter regime of the proposed NRL

o experiment (10 kA, 2 kG toroidal field, y > 3). These equilibria are
analogous to the slow mode of rotation of a cylindrical laminar beam in an
kgi axial gquide field. In order to test the sensitivity of their equilibria to
o the cold-fluid assumption, we used Finn's code EQUIL3® to initialize

{53 IVORY for A 14, 1 = 10 kA, Bg = 1 kG, In IVORY, numerical noise

§S§ due to discrete particle effects causes deviations from the perfect lamin-
hEy arity assumed in EQUIL3. The drift surfaces obtained from EQUIL3 are shown
o in Fig. 4. The fact that these surfaces are closed in the region where the
jﬁ beam indicates that an equilibrium exists. In the simulation, we propa-
‘5 gated the beam for twenty revolutions around the torus during which time
3% the beam rotated twice about its own axis. No drifting off center was

7y observed, and the beam minor radius remained constant. We conclude that

P the EQUIL3 equilibria are not significantly affected by the addition of

g;; smal) amounts of temperature.

‘ff The methods of Finn and Manheimer break down as the transition from
i§§ diamagnetic to paramagnetic rotation of the beam about its own axis is

Lot approached. The transition occurs at the energy at which the self forces
5&@ of the beam are equal to the weak focusing force due to the external field
\ {ndex. For a uniform density beam with Budker's parameter v and beam rad-
:‘; fus rp, the transition occurs at

R

§3f 2, 2,173

wo- (4v o /rb ) (1)

et "f{‘ﬂ1~ i
o
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® Figure 4. Drift surfaces obtained from EQUIL3. Inside the separatrix, the
‘ drift is diamagnetic (anti-clockwise here). Outside, it {s para-
magnetic (clockwise).
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For the parameters we have adhered to in all our simulations, namely rp =
2cm, rg =1m, I =10 kA, we have Yr = 18. Above this energy, the
toroidal field 1s not needed for equilibrium. However, for reasons related
to beam stability, orbital resonances etc., the toroidal field will in
practice probably be maintained throughout the acceleration of the beam.
No detailed cold-fluid calculations of beam equilibria along the lines of
Ref. 7 have been carried out for y > Yqo In our simulations we have
found that by using the same numerical presciption as for y < Yp we can
find satisfactory equilibria above transition.

Since betatron equilibria analogous to the slow rotation mode in cold
cylindrical beams have been found, it is natural to ask whether other
cylindrical beam equilibria carry over to the betatron. We have looked at
both a "fast mode" and a Kapchinsky-Viadimirsky (K-V) distribution, but
neither appears to a modified betatron equilibrium, at least in the regime
we examined. In the “fast mode" the beam is again laminar, but rotates at
approximately the cyclotron frequency Q6/y = eBg/mcy, where Bg is the
toroidal magnetic field. When initialized in this manner at Bg = 1 kG, v
= 12, the beam slowly expanded in minor radius, and 1/3 of the particles
were lost to the wall after 14 turns,

If a beam from a non-immersed cathode is propagated into a region with
an axial magnetic field, then a K-V distribution can result. The beam
rotates at half the cyclotron frequency, Qg¢/2y, and transverse emittance
supplies the additional radial force needed for equilibrium. With Bg = 1
kG and vy = 12, a beam with a K-V distribution expanded and lost over half
of its particles in 15 turns. At y = 20 the behavior was similar. When
the toroidal field was turned off at y = 20 (> yT). however, the K-V
distribution showed no significant increase in minor radius. At present we
do not have physical explanations for these observations.

An issue of particular importance with regard to beam stability is the

amount of energy spread and transverse emittance the equilibrium can toler-
ate.? Lacking self-consistent models to initialize our simulations, we

10
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® decided simply to add these effects to the slow-mode equilibrium and see
how the beam evolved. Taking the equilibrium at y = 12, Bg = 1 kG, we

added a small random component Ay to the energy of each particle, drawing

-8v2 /2y, 2
from a Gaussian of the form e th | where the ven iS the width,

® We find that the beam develops spiral arms, made up of particles" evaporat-
ing" from the beam, as shown in Fig. 5. These particles can end up on the
wall., If Yen is large enough, the whole beam eventually disappears in
this manner, This behavior car be understood using results from EQUIL3.

® Fo the equilibrium shown in Fig. 4, one can compute the drift-surfaces of
test-particles with energies different from the equilibrium value. For ay 4
=t 0.1 (less than 1% deviation from y = 12) there are closed diamagnetic
drift-surfaces only for particles less than 1 cm from the beam center, as

) shown in Fig. 6. For Ay = t 0,2, the diamagnetic region is still smaller,
as shown in Fig. 7. Particles outside this region are on paramagnetic sur-
faces, which are distorted near the beam and give the spiraling effect.
Particles with energy greater than the equilibrium value form one arm and
those with less energy form the other (see Fig. 7). The arms do not
rotate. As current is lost from the beam through these arms, the diamag-
netic region shrinks. (In the low current limit all equilibria are para-
magnetic.) Thus, one can have an “instability" in which all of the beam
eventually migrates to paramagnetic surfaces, which may intersect the
wall. Choosing Ten = 0.5, B, = 1 kG, we find that 2/3 of the part-
icles are lost to the wall after about four circulations. The remaining
particles rotate in the paramagnetic direction, and the energy spread is
greatly reduced. For Yen ® 0.1 (Fig. 5), less than 10% of the part-
fcles are lost through the "arms", and the remaining beam is cold. The
ability of the beam to sustain a temperature spread improves as one gets
further below the transition energy. For y = 4, for example, Ref. 7 esti-
mates that a low density tail with ay/y ~50% can be confined in the
beam,

The effect of increasing the transverse emittance of the beam, leaving
everything else fixed, is what one would expect: the beam is mismatched
and expands and contracts with an average radius larger than the inftial




R Y
AR Al

] . A [
LA WEIE S 2

-
~

Wi LIRS

-

i

o e A

| reneres

O

v
....................

100.

104.

| S ‘”o

0. | 1 A

AN
.'-"l ..o
. “‘- -
LK §
M -
1
.M.
06". '.
) O
.

-8.80 —4.40 0.00

0.

0.

1.

12

NN AN AR RNR

Figure 5. Plots of minor cross-section of beam with 13 energy spread after
(ll'Q and (b) 8 turns around torus.
motion.

Arrows show direction of

ALY L P P RS R I SN L L ORI
et T .‘{k(l.‘:\-{\'.‘- ASE KN "d"_'n 'L‘i‘bl. RS RN




- v \

Figure 6. Drift surfaces of test particles with energy mismatch ay = = 0.1.
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2 cm. Emittance was introduced by giving the particles random perpendic-
ular momenta P, drawn from the distribution eP1 /2Pth” wnere

Pen is the width. A picture of a beam with y = 12, Bg = 1 kG, pgp/m

= 0,28 is shown in Fig. 8. The beam expands and contracts between radii of
3 and 2 cm. The addition of emittance creates an energy spread, and the
formation of spiral arms is observed during the evolution of the beam,
These are not very pronounced, however, since the energy spread is small.
For a case with pgp/m = 0.4, the only difference noted was that the maxi-
mum beam radius was about 4 cm. No particle loss was observed in these
simulations. One would expect that one could obtain a matched state in the
presence of increased emittance by making the beam rotate faster about its
own axis. Recent work by Grossmann, Finn, and Manheimer!? confirms this.
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number of modes of oscillation which can be driven unstable through inter-
actions with each other, with a resistive wall, with gaps in the wall of
the device, etc. These instabilities have received a2 good deal of attent-
ion in connection with synchrotron accelerators and storage rings (low cur-
rent, high energy).!! It appears, however, that for the high-current
regime we are concerned with, some of these instabilities are qualitatively
different from what is found at low current. The self-fields and toroidal
magnetic field play important roles.

The main emphasis in our work has been on the negative mass instabil-
ity, since it appears to have the largest growth rate. In addition, it is
the instability most readily amenable to analytic and numerical treatment.
Our main tool in this study has been the 3-D PIC simulation code IVORY. 1In
conjunction with running simulations, we have reanalyzed the theory of the
negative mass instability, The numerical and analytic approaches provide a
check on each other. For the resistive wall and beam breakup instabili-
ties, we have performed only analytic and semi-analytic studies owing to
the difficulty of performing numerical PIC simulations.

1V. Beam Stability
The circulating electron ring in the modified betatron possesses a

Since there is a considerable amount of algebra associated with
derivations for the above instabilities, we have relegated the derivations
to the appendices. Only the relevant physical results will be described
here.

ONRSS ottt NN el ale -,

A. Description of Negative Mass Instability

The conventional negative mass instability causes a toroidal beam to
bunch in the toroidal direction.!? Experimentally, it was found to limit
the intensity of the beam by creating a spread in energy, which caused the
beam to spread out.!? In our simulations of the high current betatron,

PPt

however, very little toroidal bunching is observed. The mode we see is a
primerily transverse, almost rigid kinking of the beam, as in Fig. 9.
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figure 9. INlustration of transverse kinking effect of negative mass insta-
bility. Shown are plots (r vs. 2 and 6 vs. r) of the beam at
successive times during the development of the 2 = 1 negative
mass instadbility. In the r-z plot, particles at all e-positions
are plotted. Dimensions are in om.
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® Some description of our simulation scheme is necessary in order to under-
stand this figure. For stability simulations, IVORY uses a spatial grid to
resolve the minor cross-section of the beam. The toroidal dependence of
the fields is treated by a sum of Fourier modes. In most of our simula-
® tions to date, just three mode numbers are resolved, namely 0,:2 where g is
an integer. Thus, only a section of 2n/% radians of the torus needs to be
modeled. The other 2-1 sections are identical. The particles are pushed
in a three-dimensional, nonlinear manner. For the sake of economy in com-
) puting, just nine groups of particles are used to resolve the wavelength we
are simulating. Initially, these groups are identical and equally spaced
(Fig. 9a), so that only equilibrium fields are produced. We then initiate
the instability by giving the particles a smail-amplitude (less than 1% of
® the beam radius) sinusoidal displacement from their equilibrium position.
The instability then commences to grow at a well-defined linear growth
rate, with a real frequency approximately equal to 20,/y where 9, is
the cyclotron frequency associated with the vertical field B;. The per-
turbed fields generally grow about four decades in energy during the linear
growth regime. As their enerqy becomes comparable to the equilibrium field
energy the effect of the instability on the ring becomes visible, as seen
in Fig. 9b. Since the phase velocity of the unstable wave is almost equal
to the particle circulation velocity, the sideways displacement of each
particle increases monotonically in time. Particles moving to larger rad-
ius take longer to go around the torus, and so slip back relative to those
at the equilibrium radius. Conversely, particles moving to smaller radii
advance relative to those at the equilibrium radius. As a result, the beam
eventually breaks in the toroidal direction, as shown in Fig. 9c. Soon
after this, the beam strikes the wall and about 2/3 of the current is
lost. The remainder continues to circulate for some time as a diffuse
cloud. For our typical parameters (10 kA, 6 MeV) and choosing 2=1, this
e whole process takes about 20 circulation periods, or 0.4 usec, to occur.
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B. Linear Growth Rates of Negative Mass Instability:
Theory and Simulations

The simulations we performed of the negative mass instability showed
substantially different growth rates from those predicted by existing
theories.®>*!3 These theories neglected the toroidal corrections to
Maxwell's equations without rigorous justification. By including these
effects to first order in the parameter e = a/ro = (minor radius/major
radius), we obtain good agreement with simulations over a wide range of
parameters. The details of this calculation are in Appendix A. A compar-
ison between the theory and IVORY simulations for different &L-numbers is
shown in Fig. 10. Here the beam parameters are y = 12, I = 10 kA, Bg =1
kG. The agreement is rather good even up to 2 = 20, where the long wave-
length approximation &/rg € 1/a, used in the theory, is starting to break
down. The growth rate scales approximately as 2!/2, It is noticeable
that the agreement for £ = 1 is poorer than for 2 = 2 to 8. We suspect
that some second order toroidal terms dropped from the theory may be
responsible. A derivation keeping these terms is planned (see Appendix
A).

The variation of growth rate I with y for 2 = 1 is shown in Fig, 11,
This figure contains results for both Bg = 1 and 0 kG. At Bg = 1 kG,
the theory predicts a sharp cutoff at about y = 21. Due to numerical noise
in IVORY, it is not possible to see zero growth rate. One can only put an
upper bound on I'. At y = 25, T was reduced by a factor of four from the
value at y = 20. For Bg = 0 no equilibrium is possible for y < 18 as we
saw in Chapter 11I1. The theory predicts that for y > 12, there is no nega-
tive mass instability. A simulation for y = 20 tends to confirm this: we
find I'/c < 2x10-° em-!,
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Figure 10. Growth rate of negative mass instability: comparison between
theory and simulations for different mode numbers 2.
e
21
@

’, NS R RCREE T TE) - ‘e "mw [P
N ‘.‘A’f‘i\i\ﬁ\i‘f.\l\\:\\\\\.\. AN NN T T T




I ARSI L s T Rt T i "‘T

Na¥ s ‘.

Ve,

®

< ".‘h‘.‘

LS

~umoys 2@ 0 = °g
ue 9% [ = Vg 404 vreg -suoyleinus pue AJ0343 uUdIMIIG uOS .
-T_awes 1A csA A3}LpqeIsu} ssew 3apiebau 1 = T JO IR YIM0J) 11 34nby 4 ”

AL

«*»
S .

-
i~}
(=]
N
©
vt
N
-
- o]
-1

LS

"

22

ox 1=% 1 1.2 ;
190 = d

- :

- =

'

= =2 r

a f

N J

» P . Sy e P RRE s ) 3 : . e : ] e ] o - § 2y
NI, SN GRANOR DORES TUNNT AR RO | Sooil BAQRT AORGr| iR

hEN

AR

LI



A A A A i it it B I A PR i S - B S ik e o S B St i e e g LN AL AEE ain Smi-mEme s —~r v--w—v-ﬂ.-‘]

....................

C. Effects of Transverse Emittance and Energy Spread on Negative Mass
Instability

The growth rates computed for the negative mass instability in the

® last section are very large in practical terms. It has been suggested®:®
that Landau damping due to a spread in toroidal rotation frequencies can

contribute significantly to the stabilization of these modes. Since the

beams we are concerned with have Vg = c, a spread in rotation frequencies

® can come only from a spread ar in the radii of the particle orbits. If the
particles were tied to the field-lines, then the toroidal frequency spread
AQ would be
AQ Ar
® 8. L (2)
0

For the general case, in which particles are not tied to the field lines,
Eq. (2) gives an upper bound on the toroidal frequency spread to first

® order in Ar/ro. “"Betatron" oscillations of the particles across field
lines can add corrections of order (ar/ro)? to Eq. (2). For the Finn-
Manheimer equilibria, we have computed aQ/Q by direct measurement of part-
icle rotation frequencies in our simulations. One would expect to achieve

o the maximum value of aQ/q at the transition energy (YT = 18), since
poloidal rotation ceases and the particles follow the toroidal field
lines. Equation (2) then predicts an/Q = 4x10-2, since the beam diameter
is 4 cmand ro = 100 cm. At y = 20 and y = 12 we measured A/Q = 3x10-2

L J and 42/Q = 6x10-3 respectively. The deviations from Eq. (2) are due to
poloidal rotation.

To estimate the stabilizing effect of the frequency spread, we did
@ some simulations in which the spread was zero. This was accomplished by
replacing the particle beam with a ring made up of rigid disks. We find
that for y = 12, the growth rates obtained are not significantly different
from those of the particle equilibrfum, as shown in Fig. 12, For 2 = 4,
® the equations of Ref. 9 would predict a 10% reduction in the growth rate
due to the frequency spread which is not inconsistent with our results.
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beam with enhanced energy spread or enhanced transverse emit-
tance.
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A key question is whether the beam equilibria we are simulating can be
modified to obtain substantial reductions in growth rate. In Chapter 111,
we looked at two ways of increasing the spread in frequencies; viz., by
introducing an energy spread on the beam, and by increasing the transverse
emittance. The result of having a 1% energy spread is to decrease the
growth rate by 30%, as shown in Fig. 12, We saw in Chapter III however,
that further increases in energy spread lead to serious loss of confine-
ment. By increasing the transverse emittance from 30 mrad-cm to 90
mrad-cm, the growth rate dropped by somewhat less than 30% (Fig. 12).
Again, larger decreases can be obtained only at the expense of beam
quality.

D. Resistive Wall Instability

The resistive wall instability is driven by the phase lag between the
electric and magnetic response of the wall image to perturbations of the
beam. In this section, we summarize the results on this instability
obtained in Appendices B and C. There, we find that any slow mode on the
beam is driven unstable by a resistive wall. There are two transverse slow
modes with frequencies given by w ~ 22;/y - Qg;/y for the cyclotron
mode and w ~ 2Qz/y - wg for the "ExB" or “space-charge" mode. Here
wg is the slow transverse bounce frequency of the beam.

For the slow cyclotron mode, the growth rate peaks at w =~ 0, which
occurs for £ = Q¢/Qz. Since R, and y increase during beam accelera-

tion, this constraint is satisfied only for a limited time period st which
corresponds to a band width

Aw';z afAt
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\ Setting Aw equal to the growth rate I, we obtain the expression for the 1
'f number of e-foldings as the beam goes through the resonance:

i r2 Y

- rat = IT§;777 a7 (4)

Equation (3) is maximized late in the acceleration cycle, when v is large
and the resonant value g is small,

Cala A4 5,
UYL

After passing through w = 0, the instability transitions to a lower q
> growth rate regime which persists for the remainder of the acceleration
cycte. In this regime the number of e-foldings is given by

Fi
..

.. (mt)e1r1= = [ rdt (5)

L

33 where the integration is from the time when « 2> 0 to the end of the accel-

v eration.

- q
ﬂ For the slow space-charge mode there is no w = 0 resonance, because

™ 0 < wg/(Rz/Y) < 1. Thus, one has only the regime of adiabatic growth

g corresponding to Eq. (5). This regime covers the entire acceleration

;‘ cycle. ﬁ
b Besides the transverse slow modes, there is also a longitudinal slow

2 space-charge mode which is resistive-wall unstable. There is no resonance

" assocfated with this mode. 1
:‘i

o

We illustrate the relative importance of the various forms of the
resistive wall instability for the typical modified betatron parameters
shown in Table 1. A stainless steel wall with normalized conductivity 1
4xg = 5.24x10% cm=! s assumed. For the cyclotron mode with w = 0, we find

beiay Sy
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TYPICAL MODIFIED BETATRON PARAMETERS USED IN EVALUATING
RESISTIVE WALL INSTABILITY GROWTH RATES

TABLE 1.

Toroidal Magnetic Field Be 2.5 kg

Vertical Magnetic Field (Initial) Bz 115 g
°® Toroid Major Radius Ro 100 cm

Toroid Minor Radius R 10 cm

Beam Radius a 1cm
o

Beam Current v 0.59

Beam Energy Y 7-100

Acceleration Time T 3.107 cm
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a growth rate I = 4x10-5 em~!. Equation (4) is maximized for y ~ 70, for
which ¢ = 1, Total growth is rat = 3.6 near w = 0. The contribution from

Eq. (5) is much larger, however, giving (Tat)eff = 51.

The growth rate of the transverse space-charge mode is comparable to
the cyclotron mode, but growth occurs over the whole acceleration cycle,
giving (rat)eff = 150.

The preceding analysis ignores any thermal spread of beam energy,
which would tend to damp the instabilities. In Appendix C, we show that
for a spread of a few percent in the initial beam energy, damping should be
significant. We saw in Chapter III however, that attempting to stabilize
the instability in this way can seriously disrupt the beam if it is near
the transition energy.

Successful operation of the modified betatron requires cutting the
growth (rat)eff to about unity. Employing more highly conducting cavity
walls (e.g., copper) can reduce growth by a factor of six. Reducing the
acceleration time by an order of magnitude would then effectively eliminate
these instabilities. Alternatively, a spread of a few percent in the elec-
tron energy may be sufficient to damp out the modes.

E. Beam Breakup and Image Displacement Instabilities

Our work on the beam breakup and image displacement instabilities was
motivated mainly by the proposed racetrack induction accelerator.!“ This
device, sketched in Fig. 13, is a recirculating accelerator like the modi-
fied betatron. However, it uses accelerating gaps instead of a betatron
field to increase the beam energy. In a linear device the beam breakup
fnstability arises from a resonant coupling between beam transverse oscil-
lations and m=1 (m = azimuthal mode number) electromagnetic cavity modes
localized to the acceleration gaps. This coupling can result in large
lateral displacements of the beam.!5 The instability is not due to the
accelerating function of the gap. Any discontinuity in the wall can have a
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;‘ similar effect. Thus, beam injection and extraction ports in the racetrack
- or modified betatron accelerators could excite beam breakup. Recirculating 1
o devices differ from linear devices in that (1) the beam keeps passing the
ﬁ same gaps and (2) there could be a resonant interaction between the beam-
, breakup and negative mass instabilities. As we saw in Section D, there are
| two transverse slow modes and one longitudinal slow mode on the beam, {
%: These have negative energy and so can couple unstably to the gaps. Coup-
}; ling to the longitudinal mode occurs only due to toroidal curvature. To
ﬁ; model the effect of the gaps, we used a gap response function defined by
. ZJ. m03v ; {
- T w2+iw°w/0~w°2 (6)
;. where Z) is the transverse impedance of the gap, Q is the quality factor {
' and wg s the gap resonant frequency. Details of the calculations are
‘E given in Appendices D and E.
N In Appendix D toroidal terms are dropped so that the beam behaves as q
od if it were in a straight but periodic system. In this way we can study the
:é effect of passing by the same gaps repeatedly. The parameters we studied
?Q are given in Table 2. The acceleration gap parameters are those of a lin-
- ear induction accelerator developed by the National Bureau of Standards. q
4 We find a beam breakup growth rate I = 1,3x10-3 cm-!, yielding 30 e-fold-
3 ings during the acceleration. This amplification can be cut by reducing
_§ Q. If a value of Q = 6 can be attained, then only 5.5 e-foldings occur.
- (
;2 In order to do more exact calculations taking account of beam acceler-
js ation and transients, we used the code BALTIC.!® Table 3 summarizes thir-
;§ teen runs, varying N (the number of gaps), Q, wg, and vy, but keeping
- NZ1/Q fixed. Cases 1-4 show the effect of changing the gap resonant fre- J
-uf quency wg. The interaction is greatest when wy is an integral multiple
BY) of the beam circulation frequency 9/y, €.g., when wy = 0.17757 = 13
ﬁ fiz/v. Cases 5 and 6 show the effect of dropping y. Case 7 shows that by
™ decreasing Q from 60 to 10, the growth rate drops significantly. )
&
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TABLE 2. NOMINAL RACETRACK INDUCTION ACCELERATOR PARAMETERS

Path Lengths

Drifttube Radius

Beam Radius

Gui: - Field

Beam Current

Beam Energy

Number of Revolutions
Number of Gaps
Acceleration per Gap
Gap Resonant Frequency
Mode Quality Factor
Gap Transverse Impedance

Gap Width

- . P
Pt St VD i ke
LS 6N e R VLR XN

L = 460 cm
R=17cm
a=1cm
B = 2 kg
I =1kA

U= 0.4 - 40 MeV
50

N=24

AU = 0.2 MeV
880 MHz
Q=60

15 ohms

2 =5¢m

3l

(we = 1.173 em=?)
(v = 0.0588)
(y = 1.5 - 80)

(ay = 0.4)

(2,/Q = 0.5)




TABLE 3. SUMMARY OF BEAM BREAKUP INSTABILITY CALCULATIONS WITH BALTIC

P TR .-
Y -..-,:.r../ I N ) ;

Py
",

wo r
Q (cm-!) Y (10-* cm-})
60 0.18 80 8.3
60 0.1732 80 3.3
60 0.17757 80 8.9
60 0.1787 80 8.8
60 0.18 60 10.0
60 0.17757 60 12.3
10 0.18 80 3.4
2 60 0.18 80 9.6
2 60 0.18 1.5 12.0
4 60 0.18 1,5-80 9.8
4 10 0.18 1.5-80 2.6
4 6 0.18 1.5-80 1.2
4 6 0.17757 1.5-80 1.6
32

FIEATE R K . .
i\.d:\'."".‘: '_} -)",.:'}:\ e T A T

L



Cases 8 and 9 treat two evenly spaced gaps, showing that the growth
rates are about the same as for a single gap (NZ]/Q is fixed). In cases
10-13 there are 4 gaps spaced 30 cm apart, and the beam is accelerated.

The average growth rate is shown. From these we see that with Q = 6 growth
of the beam breakup instability is negligible (< 3 e-foldings occur).

The image displacement instability arises due to the interruption of
the beam image current at a discontinuity in the drift-tube wall. It is
the long wavelength limit of the beam-breakup instability. For our param-
eters, we compute a peak growth of 9x10-° cm-!, and this occurs only over a
narrow range of parameters. Its effect is therefore negligible. No
evidence of coherent growth of this instability was seen in the BALTIC
runs.

In Appendix E, the effect of the accelerating gaps is put into the
full toroidal dispersion relation. In that way, the interaction between
the beam breakup and negative mass instabilities can be investigated. The
strongest interaction would be expected when the gap resonant frequency
matched a harmonic of the beam circulation frequency. For ro = 70 cm,
this occurs for 2 = 13, The main result of this work is that the coupling
between the two instabilities is weak. No strong hybridization occurs.
Figure 14 shows that the negative mass instability is dominant and its
growth rate is insensitive to the presence of the gaps (Q = 6 is assumed).
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V. Conclusions

Our work on the modified betatron accelerator has dealt with a range
of topics involving beam injection, equilibrium and stability. For the
problem of injection, we performed the first detailed particle simulations
of firing a beam into a torus. These showed that the body of the injected
pulse propagates in a well-behaved manner around the torus at the theo-
retically predicted radius. The head and tail of the pulse, which are
unmatched, drift rapidly in the vertical direction, striking the wall. No
serious wall damage is expected to result.

On the subject of beam equilibrium, we attempted to find in the beta-
tron the counterparts of beam equilibria found in linear devices. Follow-
ing the work of Manheimer and Finn, we sucessfully simulated the slow rota-
tion mode of the beam. We found that this type of equilibrium was rela-
tively insensitive to the addition of small amounts of transverse temper-
ature. For the fast mode of rotation and for a Kapchinsky-Viadimirsky
distribution, no equilibrium could be found for the parameters we chose.

We emphasize that our search for these alternative equilibria was not
exhaustive,

The addition of an energy spread or of increased transverse emittance
to the beam is commonly advocated in order to improve beam stability. We
investigated the effect these changes have on the slow-mode equilibrium,
We found that unless the beam energy is far removed from the diamagnetic-
paramagnetic transition energy, the tolerance of the beam for an energy
spread is very limited. The beam tends to develop spiral arms, along which
the mismatched particles escape. Significant loss of particles can
result. The development of the arms is explained using the Finn-Manheimer
model. By adding transverse emittance to the beam, large oscillations of
the minor beam radius could be produced. No significant loss of confine-
ment resulted.
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The bulk of our work concerned beam stability, and the negative mass
instability in particular. Analytic and numerical methods were used. A
new analytic dispersion relation was derived keeping toroidal corrections
to Maxwell's equations. The new theory overcomes some intrinsic deficien-
cies of previous theories. We have compared growth rates for the negative
mass instability obtained from the theory with 3-D numerical simulations
using IVORY, Good agreement is obtained over a wide range of parameters.
The growth rate of the negative mass instability is so large that it can
seriously disrupt the beam in a microsecond. Addition of an energy spread
and transverse emittance give reductions on the order of 30% in growth
rate. Much larger reductions clearly are needed. Based on our work to
date, we believe that this can be accomplished only by starting with a beam
whose radius is comparable to the minor radius of the torus.

In addition to the negative mass instability we looked at resistive
wall, beam breakup and image displacement instabilities. In general, these
have growth rates substantially less than the negative mass instability.
The resistive wall instability can probably be eliminated by using a copper
lining for the torus and decreasing the acceleration time to hundreds of
microseconds. The beam breakup and image displacement instabilities were
considered for their relevance to recirculating devices which use accelera-
tion gaps. We found that by using low quality-factor gaps the growth can

be made negligible.
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1. INTRODUCTION

An accurate cold beam linear dispersion relation for the negative mass
instability in high current conventional or modified betatrons is critical
for designing experiments, benchmarking computer simulations, and develop-
ing warm beam dispersion relations. In this report we derive a dispersion
relation correct to first order in the toroidal aspect ratio of the beta- ]
tron valid for small toroidal mode numbers. Limited comparisons with ear-
lier work are provided for reference.

The two earlier treatments of negative mass instability growth in high
current betatrons fncluded toroidal curvature effects in the particle
dynamics but not in the electromagnetic field equations.!’? In other
words, the dispersion relations were derived for beam motion in a toroidal
cavity but with fields computed for an off-center beam in a straight tube
of circular crossection. The first analysis, that of Sprangle and
Vomvoridis, used an equation of continuity appropriate to a straight cyl-
inder, as well. In contrast, the second analysis, due to Hughes and
Godfrey, incorporated an equation of continuity correct for a toroidal
beam. Predicted growth rates from these two models often have been fc
to disagree by factors of two for parameters corresponding to peak growth
and by even more at higher beam energies. More disturbingly, both models
systematically overestimate instability growth rates observed in three-
dimensiona) computer simulations.?** We attribute these discrepancies
to incomplete treatment of toroidal curvature effects.

The dominant curvature correction to the field equations is easily
fdentified. Radial motion of an electron ring (see Fig. 1) gives rise to
azimuthal bunching. This constitutes the difference between charge contin-
uity in cylindrical and toroidal geometry. Conversely, azimuthal bunching
gives rise to a radial electric field, which constitutes the (main) differ-
ence between electromagnetic fields in cylindrical and toroidal geometry.
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'. The additional coupling between radial and azimuthal beam motion need not
\ be small, Indeed, for sufficiently large energies this coupling through
N the fields must dominate coupling through the particle dynamics. The

N latter falls off with energy, while the former does not.

The present paper includes these and other (lesser) curvature effects
to first order in the equilibrium and perturbed fields, producing what we
believe to be a more accurate dispersion relation. Like its predecessors,
this analysis ignores the internal dynamics of the beam, treating it as a
string of rigid disks. The assumption of long azimuthal wavelengths also
is implicit in our derivation. Relaxing the last constraint is conceptu-
ally straightforward but algebraically difficult.

R i

In Section II we assemble the various particle and field equations
into a 5x5 self-adjoint matrix operator acting on the perturbed beam cen-
troid position and the electrostatic and electromagnetic potentials. The
< differential equations are solved to first order in the toroidal aspect
® ratio in Section III, and the remaining algebraic equations collapsed to

the desired dispersion relation. When no toroidal magnetic field exists
(i.e., for a conventional betatron), an analytic growth rate expression for
the negative mass instability, valid over a wide parameter range, can be
® derived from the general dispersion relation, and this is done in Section
IV. We have not yet attempted to obtain a corresponding simple growth rate
1 expression for the modified betatron.

L Finally, Section V presents a reevaluation of negative mass growth for
d the Office of Naval Research racetrack induction accelerator design,> based
on the new dispersion relation. The average instability growth rate during
acceleration from a few to 50 MeV is reduced by a factor of two relative to

@ an earlier prediction.6 With this improvement, the proposed accelerator
v may be able to “"outrun® the instability with only a modest beam therma)

energy spread.’

® Comparisons with computer simulation results, as applied to the Naval
Research Laboratory modified betatron design, are described elsewhere.®

; . <. . R et e et A e te e e e a s
AT ST\ I N A e e e AT N N e R e, o J
3 PSR TR AP O L 2 T D O D T TP S, T T W T T . u
. ) 8, A ok SN TN ol W W, U S GO U e




-I'\ -
‘I .l
R
<
X ‘\‘
U 1I. FORMULATION OF THE PROBLEM
L
fiﬁ We consider an electron ring circulating in an azimuthally symmetric

a conducting cavity. Dimensions and coordinates are depicted in Figure 1.
For the present we assume only that the beam and cavity crossections are

‘é? symmetric about 2=0. Otherwise, the crossections may assume any reasonable
o shape. The characteristic minor radius of the beam must be much less than
ﬁﬁ that of the cavity so that the internal dynamics of the beam can be

\' ignored. A mirror magnetic field maintains the beam in a circular orbit,
b{. and a toroidal field can be added to confine the beam against its self-
X fields, which need not be small.

\..0

..f.

ﬁ} Linearized equations for small transverse displacements of the beam
o centroid are easily obtained from the single particle equations of motion.
o

oy o . ] 3 aBr

S y 62 = GEZ - Vg 6B, + B, &F ¢+ -7 - Vo 7] %2 (1)
N4

S 3 . [, B, W,

:: yGrsGEr+ Ve 4SBZ-Be 62+-a_r-+ve-a7--—2-R ér

‘.:] 2 Yve

:.::?‘ + (Y 41) —R-z + BZ 6Ve (2)
.;4

' Perturbed quantities are preceded by a delta (e.g., 6z), while unperturbed
.fi quantities are not. Total time derivatives of perturbed particle quanti-
:ﬁj ties are represented by dots above the guantities (e.g. 8Z). Note that the
2 last term in Eq. (2) can be rearranged, if desired, by means of the

equilibrium radial force balance equation,

2 i
Ff + VoB, ¢+ v Vo /R = 0 (3)

-wfkf5?; /
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@
®
Although the perturbed azimuthal velocity equation can be derived in
many ways, using the single particle energy formula seems simplest.
360, = 66, + T 4 ()
e Y %V 8 v,

The perturbed azimuthal angle &8 of a beam disk is related to &Vg by

v

s 0
Vg = R&D + 5 or (5)

C o

Perturbed beam currents resulting from the centroid displacements
described by Eq. (1), (2), (4), and (5) are

8, = o or, 8, = p 62

and
® 8J

g = ° GVe + Ve 8p (6)

Perturbed charge density is, in turn, derived by substituting the perturbed
currents into the continuity equation and integrating the result in time,

9

3 1 )
ép + 36 956+? ﬁPDGP'P-a—zPGZ‘O (7)

Alternatively, Eq. (7) can be obtained by considering how the density of a
beam element changes as it is displaced infinitesimally in each direction.

As explained in the Introduction, we are limiting consideration to low
frequencies and long azimuthal wavelengths. In this limit we need only

determine the electrostatic and azimuthal electromagnetic potentials, which
satisfy

2
T %—Z 8¢ = - &p (8)
4

...........

........
........



g?%.ar+°_z A = - &) (9)
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o

The electric and magnetic field combinations appearing in Eq. (1), (2), and
(4) are expressed in terms of these potentials as

8A (10)

]
N

5¢ + Ve

o
~N

GEz - Ve GBr = -

Moty b
R

D
T
a4

)
‘

3|

2
3F " 8A (11)

]l
-

&Y GEr + Ve GBZ z - 8¢ + Ve

3 9
39 8¢ - T SA (12)

3}

~* 5Ee x -

> These equations complete our model,

3 Let us now cast the equations in matrix form for compactness and to
emphasize their symmetry. In so doing we also Fourier transform the equa-
o tions in time and azimuthal angle, i.e.,

N

E %t- + ta, g—e + i

2 and eliminate &Vg and the perturbed electric and magnetic fields.
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X % -1aBg 0 - % Vo 3z 62
K4
o
2] 3 1 3
'j 1986 Gr -iq8 - 37 Ve T 37 r sr

0o

0 iqs a2y’ -4 2 fu res
* (1 _g_ .2
) 1 2 i \'r r " %r

X 37 P T 3F TP — ° az 0 8¢
N +
: pd

®
)y
(a_ 12
n ) 9 or r aor
X Vg 33 P Vg3F P -fwp 0 2 6A
: +
)
E: = 0 (13)
. ® Note that the matrix operator is self-adjoint, as one would hope. Certain
4 symbols appearing in Eq. (13) are defined as

13 oB
- 2 4 r

o o, 2 YR 4+ 5= - Vo 37 (14)
- ]2 3B v v
h* = 2 r 2z 8 3 e
: %-*“*r*"esr—*r("r*az) (15)
1 @
- v £
) - 3 ] r
] 8 = Y - (16)
o r re
o
: v

(17)
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l Equation (13) can be solved numerically for beams and cavities of
f’:J arbitrary cross section. (Before doing so, it probably would be desirable
to perform a conforma) transformation on r,2z to map the beam and cavity
boundaries onto coordinate surfaces.) In the next Section we instead
assume the beam and cavity to be circular and concentric in cross section,
-“:j as fllustrated in Fig. 1, in order to obtain an analytical dispersion
relation. We should bear in mind, however, that other configurations may

- exhibit improved stability.
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I11. DERIVATION OF THE DISPERSION RELATION

To develop a dispersion relation from Eq. (13), even for the simple
geometry explicitly represented by Fig. 1, is a long and involved process.
For the sake of brevity, we here restrict ourselves to outlining the pro-
cedure and citing pertinent results.

Converting the partial differential operators in Eq. (13) to a set of
coupled ordinary differential operators is the first step. To do this we
carry out the coordinate transformation

2 =xCosy, r =R+ x siny

and expand the potentials as Fourier series in poloidal angle v.

s = Joo™(x) e™, A = JeA"(x) e'™¥

Next, we recast Eq. (13) as a variational integral, insert the &¢ and sA
expansions, explicitly integrate over ¥, and perform variations with
respect to §¢™ and SAM, This results in an infinite set of different-

1al equations in x coupling all the poloidal modes of the potentials.,

Expanding the differential equations in x with respect to the cavity
aspect ratio, b/R, leads to a natural truncation of the infinite system.
Basically, an expansion to order |m| in b/R is consistent with dropping all
higher poloidal mode numbers. Two orderings spring to mind. In the first
w, £/R and the electron oscillation frequencies 2ll are taken to be of
order unity (or smaller), and the equations expanded to order b/R. In the
second, w and &/R are taken to be of order b/R, and the equations expanded
to b?/R2, The first alternative is much simpler, seems to capture the
essential physics, and agrees reasonably well with simulation results, so
we use it in the following calculations. We are, however, investigating
the consequences of the second ordering and will publish our findings at a
later date. :

.............
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With the ordering selected, straightforward but tedious calculations 7
yield for x < a:

S¢ = .} (1 ,’!'- .11} *'lll' pcr) (xz - az(l + 280 -;3))

2
+ " pér (-xz(l - if)+ Za2 n %)

+ %(1-1;)p6r x siny
b
2 {
+ 'I%'F 1-&pR69 (-x +a2 (%2- + 48n %)) x siny
2
+ 1(1-")6: X cosy 18
3(1-%)e (18) {

A= 1 1o oree (x2 - a? (1 + 2 g))

Ve 2

+ gp eor (-x2 (1 - :7)+ 2a2 gn -g)

Vo [ 42 ﬂ
+ T (1 - ;2) pbr x siny
+ qix fuerse (x% + 2%(3 2 4 am 5)) x stny '
ToR e b2 a
Ve 02 '
+ - (l - ;-z)o 62 x cosy (19) J
10 q
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® The validity of these solutions to the truncated equations has been veri-
fied using the symbolic manipulation program MAXIMA.

Back substitution of the potentials into the variational {ntegral
] allows the remaining integrations to be carried out explicitly. (For con-
sistency, the results are truncated to first order in b/R.) Again, MAXIMA
was used to check the manipulations. The resulting matrix equations for
the perturbed centroid location appear as Eq. (20). Its determinant is

® the sought-for dispersion relation.
e, (- 2) 11,1
a, - 1- - iaB.° 0 82
2 ;;2 ;? ]
®
2
pa’ |
-108 - 1 TR
2 2
iaB_° u-p(l-a) [wV (3-3a+42n9) ér
. e =1t B U G A
2
L a
+ 1+ + 42n —)]
T
®
pa2 2 .3
1518 + 1 m . Y] Y +
2 2 2
0 [wva(a -3% 4 am ) G [(REE S
) R
+2 {1+ ‘2 + 42n b
R Y a
. — e -
@
= 0 (20)
®
e 11
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In evaluating the matrix elements, it is necessary to know the equi-
1ibrium fields. They are®

2 2
E. = %(r—R) *'i.%k' (%2 +4£n%) (21)
B,= -Vg & (r-R) +V E—(-"Zuuznﬁ)
z 6 2 ® Jer b2 a
+ Bz° (l-n-EEB) (22)

with similar expressions for E; and Br. Eq. (3) determines the magni-
tude of B;°, and Bg®° is arbitrary.

The dispersion relation is
(nz - uz"’) (rzz - wl- x/e) - Bl = 0 (23)

It represents two longitudinal (m = 0) modes, described by the longitudinal
dielectric constant,

2
cznz--:-s (%-+21.n%)(;7-w2) (24)

and four transverse (m = :1) modes, described by Eq. (23) with y = 0. The
transverse osciliation frequencies w; and wy are,

BO
2 . 4 2v
“ = "Ve T - 32 - (25)

12

S SO s Sl NI LA A e i i I Rarl Rt e
. . - L.




2

BO
Z
r -m) Ve 5 - 37 - w oW o)

2v 2 r Er

Er and B, in Eq. (26) are given by Eq. (21) and (22) with r=R and

Bz® c-itted. The last term in Eq. (26) is very small. Typically, the
external field index n is chosen such that wp? ~ w2, Note that v is
Budker's parameter, equal to pa?/4.

The key result of our analysis is the coupling coefficient between
longitudinal and transverse modes, which determines the negative mass
instability growth rate.

) { YV6 Er
x EN\w - 2)°
Y
2
2 2
+ 221}7[“"’9(3'3:7' +4zn%)+ 'R,: (l+§2- +42n~g->]‘)
Y

2
YV E
-G @)
Y

For comparison, the dispersion relations from Ref. 1 and 2 also can be cast
fn the form of Eq. (23) but with coupling coefficients, respectively,

2
Yv
x t{42) %-¢ (28)
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It should be noted that there is a degree of arbitrariness in the
choice for the functional form of p(r,z). In the preceding analysis we
assumed p to be constant out to the beam minor radius a, where it drops
abruptly to zero. One might instead have chosen pr/R to be constant, for
instance.’® Fortunately, such changes lead only to insignificant modifica-

tions of , wzz, and wrz.
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® IV. Bg® = O GROWTH RATE FORMULA
In the absence of a toroidal magnetic field, the negative mass insta- :
bility dispersion relation reduces to K
* 3
02 - w?. we = 0 (30) :
® A simple analytical growth rate expression can be derived from Eq. (30) in

a reasonably straightforward manner, if 02 s much less than wrz and can
be dropped from the equation. We address the validity of this assumption
at the end of this Section.

Solely for the sake of algebraic simplicity, we invoke four approxima-
tions.

) %? « 1

X (1+2m%) <1
Y

v'J ~~
A
b

All four are well satisfied for typical cases of interest. Then,

v
e = v g () amd)
Y

(31)
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'~
>
3
N
L v 2
< x-[y§39+i2--"-§(1+2m2)]
>, Y
X 'RV

- iy 'k—) € (32)
.
§; Significant cancellations occur when Eq. {32) is expanded.
:,': 2

v v 2
6 2 6 b

A X = f i—;? % + ;2—;2-%(% +22"3) (33)
' Y

The term linear in @, in fact, only survives due to the difference in the
factors

e
P

yow 'y

b 1 b
1+22n-a-, f+2£n-5

AN, RS
PPN e

& which appear in the first and second terms, respectively, of the definition

\ for x. Modifications to the expression for x discussed near the end of the
preceding Section, due to changing the functional form of o, are of higher
order than the terms in Eq. (33) and so drop out. Nonetheless, we should
not be surprised 1f more accurate dispersion relation derivations, perhaps

i
3 including high frequency electromagnetic effects, adjust the linear term
b somewhat,
. Substitution of Eq. (31) and (33) into
¥
§ urz e + x =0
; leads immediately to the desired growth rate formula.
' ‘ 24172
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K4
3 In obtaining Eq. (34), we have taken

02 = (1-n) Vo
.g r - ? ]

j®

which is accurate for y2 not too small, an assumption we have already

. made. Equation (34) reproduces the exact numerical solutions of the dis-
' persion relation presented in the next Section to an accuracy of 10%.

o

f Equation (34) predicts an instability cutoff for

4

1 b

(o vy > 4(1-n) {5+ 207 (35)
) At smaller values of vy, ‘he negative mass instadility reduces to the well
: known expressionl0+1l

e

i 211 1 b 172

v

([ We remark for completeness that Eq. (28), from Ref, 1, and Eq. (29), from
! Ref. 2, also yield high vy cutoffs. In the case of Eq. (29) instability
3,

: ceases for?*!2

‘

jo v > &(1-n)/(1 + 2t 2) (37)
5
3 while Eq. (28) has the same limit without the factor of four. Both analy-
® ses lead to Eq. (36) for sufficiently small vy,

]

! Let us return to our initial assumption,

[}
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o Based on Eq. (34), this inequality becomes 3
I~

N 1 2 v 1+2m£ < 1 (38)

» T-n) 3 \2 2

g |

kY or for typical parameters

' 12/3 € v

% We see that Eq. (34) is quite generally accurate for Bg°= 0.
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V. THE ONR RACETRACK INDUCTION ACCELERATOR

The Office of Naval Research together with the Naval Research lLabora-
tory have developed the design for a racetrack induction accelerator
intended to accelerate a 1 kA (v = 0.0588) electron beam to 40 MeV (y = 80)
in fifty revolutions. In an earlier report,® we investigated the beam
breakup and negative mass instabilities for this design, concluding that
the beam breakup instability poses few problems for induction module Q's of
order six, a realistic value. The negative mass instability was found to
be somewhat more threatening, although there was reason to hope that
thermal effects would reduce the predicted growth rates, especially for
large toroidal mode numebrs.” Our work was based on the dispersion rela-
"' tion of Ref. 2. Here, we repeat the analysis using Eqs. (23) - (27).

We treat the racetrack cavity as a torus of major radius R = 70 cm.
: (Straight sections of the racetrack are expected to have a favorable, but
@ very small, effect on total negative mass instability growth.) Varying the
; assumed radius has little affect, because changes in the growth rate are
approximately balanced by changes in the path length., In accordance with
\ the accelerator design, the cavity and beam minor radii are taken to be b =
| ® 7cmand a=1cm. ABg® =2 kG (we = 1.73) guide field is applied.

The numerically determined growth rate for these parameters and 2 =
13, a toroidal! mode number near the upper end of the range for which the
@ model is valid, is plotted as the solid curve in Fig. 2. The result from
: Ref. 6 is shown as a dashed line. The average growth rate is reduced by
about a factor of two. Our more optimistic findings suggest a total nega-
tive mass instability amplification factor of fifteen e-foldings. This
@ growth level probably can be reduced to an acceptable level (say, five e-
foldings) by thermal effects or design changes.
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Figure 3 fllustrates the corresponding Bg°
values are reduced somewhat relative to the earifer results, but the high

energy cutoff is shifted up in energy by a factor of twenty.

Eq. (34) reproduces the solid curve well,
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.....................
--------

......

;;;;;;;;;;;

21

= 0 growth rates. Peak

........

T <
«n .\-'q‘\
ldm\-l.“u‘_‘_

For v > 20,

.........




0°08

ubiSap 403R43|IJE UOLIINpUL joea3adea YNO Y3 403 Abadud 40
:o_wuczw e Se ajea yimouab A3rtqejsul ssew aaLjebau pajdLpadd

‘pLat4 apLnb ou YiiM

‘¢ d4nbi4

0°09

Vit 1 \
3y 0s=9g \
e1 = 7 \ —-10°¥
9 "Jo¥ ——- \

LInsdd MAN — /
| ] |

0°9

TR W PO TR g g ) - O
L b A AL L PR - R At.. A
(300NN, RAOCENS LY 9 AR

(;.®9g.01) J

:l. ‘-.‘Cl,". '!
PO |
- ¢

s i e VR

» e v v

RANR) N

.-ﬁ‘.“'\

22

e

T W

-

.
-

S s o,
NI s
rata'A.alala'a’a’a

o
e
S s

(LR
- . -
.-t

ondiacndines ol

.

B

AL
- -
WIS

® .
o
e
LI

o
L

N 7.'. .
(TSR

R

Ly

.
.
LA

RN
PRI, T )

‘ ‘.‘r'



LA Ve e ¥

- e e g A

.........
...............................

L SR
Bl

1.

2.

3.

7.

9.

10.

1

12.

PR YO Y

v

REFERENCES

P. Sprangle and J. L. Vomvoridis, “Longitudinal and Transverse Insta-
bilities in a High Current Modified Betatron Electron Accelerator,"”
NRL-4688 (Naval Research Laboratory, Washington, 1981).

T. P. Hughes and B. B. Godfrey, “Linear Stability of the Modified Bet-
atron," AMRC-R-354 (Mission Research Corporation, Albuquerque, 1982).

T. P. Hughes, M, M, Campbell, and B, B. Godfrey, "Analytical and
Numerical Studies of the Modified Betatron," IEEE Nuc. Sci. NS-3n,
2528 (1983).

T. P. Hughes, M, M, Campbell, and B. B. Godfrey, “Linear and Nonlinear
Development of the Negative Mass Instability in a Modified Betatron
Accelerator,” Beams 83, to be published.

C. W. Roberson, "The Racetrack Induction Accelerator," IEEE Nuc. Sci.
NS-28, 3433 (1981).

B. B. Godfrey and T. P. Hughes, "Beam Breakup Instabilities in High
Current Electron Beam Racetrack Induction Accelerators,” IEEE Nuc.
Sci. NS-30, 2531 (1983).

P. Sprangle and D. Chernin, "Beam Current Limitations Due to Instabil-
jties in Modified and Conventional Betatrons," NRL-5176 (Naval
Research Laboratory, Washington, 1983).

T. P. Hughes, M. M, Campbell, and B, B. Godfrey, “Simulations and
Theory of the Negative Mass Instability in a Modified Betatron," AMRC-
N-247 (Missfon Research Corporation, Albuquerque, 1983).

D. Chernin and P, Sprangle, "Transverse Beam Dynamics in the Modified
Betatron,"” Part. Accel. 12, 85 (1982).

V. K. Neil and A. M. Sessler, Rev. Sci. Instr. 36, 429 (1965).

R. W. Landau and V. K. Neil, "Negative Mass Instability," Phys. Fluids
9, 2412 (1966).

B. B. Godfrey and T, P. Hughes, "Beam Breakup Instabilities in High
Current Electron Beam Racetrack Induction Accelerators," AMRC-R-469
(Mission Research Corporation, Albuquerque, 1983).

23

2 Y -'.'\ ) )

.....

...........

P A SN S N N AR T N I e e N NN
EERTRTNY A et e e e AT ORI T R RN S R P T T P




b et ant Ak el et stk stafi ot Jari o

® APPENDIX B

Py




.

.......................... iy Eaac it des ~ MLACACARIEIE g ) S T
. APPENDIX B
UNCLASSIFIED
SLZURITY CLASSIFICATION OF THIS PAGE Mhen Dere Entered)
REPORT DOCUMENTATION PAGE .E,%E‘ébcm;fg%’,}g",?ow

"TREPORT NUMBER 2. GOVT ACCESSION NO| 3 RECIPIENT'S CATALOG NUMBE R

8. VITLE (and Subtitle) S TYPEL OF REPORT & PERIOD COVERED

LINEAR STABILITY OF THE MODIFIED BETATRON INTERIM

€ PERFORMING ORG. REPORT NUMBER
AMRC-R-354

{7 auTwonce, ® CONTRACT OR GRANT NUMBER3,

T. P. Hughes

B. B. iadfrey N00014-81-C-0647

10 ’IOG.AM ELEMENT PROJECT TASK

PERFORMING ORGANIZATION NAME AND ADDRESS
AREA & WORK UNIT NUMBE RS

MISSION RESEARCH CORPORATION
1400 San Mateo Boulevard, S.E. Suite
Albuquerque, New Mexico 87108

3 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORTY DATE
Office of Naval Research April 1982
800 North Quincy Street 3. NUMBFR OF PAGES

Ar1ington Virginia 22217 30
MONITORING AGENCY NAME 8 ADDRESS 11 ditterent Irom Controlling Difice) | 5. SECURMITY CLASS (of this report,

18s. DECLASSIFICATION DOWNGRADING
$Cr Du [ 4

| S—— —
6 OISTREUTION STATEMENT (of this Repori)

Approved for Public Release - Distribution Untimited

19 DISYTRIBUTION STATEMENT (of the abatract enfered in Block 20, 1f difterenr from Report)

10 SUPPLEMENTARY NOTES

| S
9 xt 1§ Continye on reverse arde Il necessery and identily by block number)

Modi b:tatron
Negative mass instability
Resistive wall instabilities

20 ADSTR ALY (Continue on reverae side Il necessary and idontify by bleck number)

Tre 1inear stability of the modified betatron is investigated by deriving
and numerically solving a dispersion relation. For nonresistive modes,
growth rates significantly larger than those of previous calculations are
obtained. The effects of a thermal spread in beam energy is estimated, and we
conclude that there will be significant Landau damping of the most dangerous
nonresistive and resistive modes.

o 2] ,‘“" 3473 soimion oF 1 oV 88 18 OBSOLEYE UNCLASSIFIED

SECURITY CLASSIFICATION OF Tais PAGE (When Dore Entered)

.......

e




it R S ALt ad At A e |

CONTENTS

Section Page

. 1. INTRODUCTION
® I1. LINEAR DISPERSION RELATION 2

J 111.  THERMAL EFFECTS ON RESISTIVE INSTABILITIES
) Iv. SUMMARY 12
: APPENDIX 13
jo

%

¥

‘W vy W i e

-
%
b
g
U
Lt
y
3
B
A

- . DRI R R
’ J .Q. { .;" .. " '.. " .’ "q "- - '-- ‘. PJd Y BN rd . - ™ @ 2T e et et T et mt
) . . = o e PO IR | . Bt T N P R R SR R P DR
% A NN (‘\ e P, R S A I RN e ._‘-.‘ N -'-_ - ;'.‘:':-.?'. -_.':. ~ ~._.-...~. APPSR N, RN .-_"._j




.

A
FRRES B

LIST OF ILLUSTRATIONS

{ Figure Page

1 DNlustration of modified betatron concept. The major radius
of the torus is rp, the minor radius is a and the beam
radius is rp. The external magnetic fields consist of a
focusing mirror field B, and a toroidal field Be‘ 20

O33R

ITlustration of nonresistive instabilities in betatrons.

3 The dispersion relation is P=l. The roots are denoted

by r;, v, etc., and brackets (,) denote complex conjugate
pairs. in (a) and (b), we depict two regimes of instability
in the modified betatron. In (c), we show the origin of the
longitudinal negative mass instability, which requires

s
N

A

ry
Pt

N A'Z\’Yo (1 +22na/rp) < 1. 21
: 3 Real and imaginary parts of the nonresistive ¢ = 1, 2, 3, 4
_; modes obtained by solving Eq. (3) numerically for the equil-
A ibrium parameters given in Table 1(a). The frequencies are in

units of 3x10!¢ sec-!. For Yo < Yepan® ON1Y the slow

mode {s included (cf. Fig. 2). 22
3 4 Growth rates of the nonresistive ¢ = 1, 2, 3, 4 instabilities

for the parameters in Table 1(b). 23

5 Growth rates of the fast (dashed lines) and slow (solid
lines) branches of the nonresistive instabilities in the

A
5
N region Yo < Ye¢ran® In going through Ysran’ the fast modes
. Join onto the instabilities in the region A > Yeran® while
A the slow modes join onto modes with zero growth rate. The
betatron parameters are those of Table 1(a). 24
6 Comparison between growth rates obtained from Eq. (3) (Curve A)
‘ and those obtained from the dispersion relation in Ref. 4 (Curve
! B), for the nonresistive & = 1 instability. The betatron param-
a eters are from Table 1(a). 25

] 7 Growth rates for the £ = 1 instability with perfectly conducting
walls (dashed lines) and stainless steel walls (solid lines).

Part (a) 1s for the parameters in Table 1(a), and part (b) is for

‘ parameters in Table 1(b). Branches A and B are modes which have

] become unstable due to the wall resistivity alone. In part (b)

the solid and dashed lines are 1ndist1n?uishable (the growth rate

of Branch B is approximately 4x10-® cm=T). Branch A' is unstable

for even g = =, 26

vQ i

i, - -y w - -
A -
3N ."w.“" v A%y l“,l\ \




<

A

o

¥ LIST OF ILLUSTRATIONS (Continued)

o Figure

* 8 Growth rates of the transverse resistive wall cyclotron mode.
Part (a) is for the parameters in Table 1(a) and part (b) is
$ for those in Table 1(b). For (a), £ = 20 and for (b), 2 = 5.

e The instability turns on when 8,0 = Qeo/" i.e., vy = Beorolz

2 (=45 for case (a)). The height of the initial peak is
b independent of ¢ and Yo (cf. Ref. 6). 27
i
i

e K. A ]

o

b Pl i e

il R R

Rt g A S B

AR

St .r.\‘ ) ,,.". A0 T e Xe T 56 SRS Ot A N AT AT A . .
\ b PRIE g " Ca® WM B AL AT A A e AR NI et - .
M h) Ly oy » \ ‘\.\ DL A& N *aT -"'.“':'f'(.‘:'\‘ SN

y .
Al - PO IS P S TN

Colt AU OO N S I i vt B B e e Bee B ma o i A m It e
R I A e RS A M M I AR Slanes ———— y e -

-----




1. INTRODUCTION

The modified betatron concept,!~3 §lustrated in Fig. 1, may
provide a compact means of accelerating intense electron beams to high
energies. A dispersion relation for the linear stability of the electron
ring in the device has been derived by Sprangle and Vomvoridis.* In this
report, we show that some of the approximations in their derivation are not
well justified, and we obtain more accurate expressions. In Sec. II, the
approximation that the phase velocity of unstable waves is approximately
the same as the beam velocity,* Vo =Vp, is discarded. This signifi-
cantly alters the results obtained in two ways. Firstly, the growth rates
obtained are typically two to ten times larger. Secondly, we find that the
conventional negative mass instability does not exist in modified beta-
trons. Rather, the beam is subject to a predominantly transverse instabil-
ity at high energies. We have made a rough estimate of the effect of a
spread in beam energy on this mode. 1In Sec. 1IlI, we examine the effect of
a moderate spread in beam energy on the transverse resistive wall instabil-
ity. We find that in some cases, the effect is negligible because Vp -
v¢ is too large. For the most dangerous nonresistive and resistive
instabilities, however, significant damping is expected.
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I11. LINEAR DISPERSION RELATION

A. Derivation

Our analysis follows that of Ref. 4, except that we assume a
monoenergetic beam. The details of the derivation are given in the Append-
ix, and here we give only the main points. The beam is modeled as a circu-
lating ring of charge which can displace rigidly in the transverse direct-
jon and which can compress in the toroidal direction (see Fig. 1).

In equilibrium, the beam is positioned at the center of the
minor cross-section of the torus, and executes a cyclotron orbit in the

mirror B, field. Toroidal corrections to the field equations are
dropped, so that the m = 0 and m = 1 fields are not directly coupled. They

are, however, coupled via the perturbed charge and current. Thus, the m
0 component of the charge density p satisfies

“

pV oV
LI} T a _6& .
at * r * Y r 0, (1)

where r(g) is the radial Yocation of the center of the beam, and V., Vg
are the beam velocity components. The second term in Eq. (1) shows that a
rigid transverse (m = 1) displacement contributes to the perturbed net

(m = 0) charge density. Contributions from perturbed m = 0 quantities to
the m = 1 charge density are second order in the beam transverse displace-
ment, and so do enter the linear dispersion relation. Consequently, the
perturbed m = 1 fields can be computed directly in terms of the transverse
displacements of the beam. The results are substituted into the m= 0
field equation for the perturbed toroidal electric field Eg(!), namely
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(see Appendix for definitions and normalizations.) Linearizing Eq. (1), we
obsaip

2 2 (1)
22k (1) - 12 Po (2 v (1) jvr(l) | - o . 0g4¥r (2)
1"e N o b \r, e Ty 2 L

Solving this equation with appropriate conducting wall boundary conditions
yields the linear dispersion relation

2 2
12 L wry g AT I
1= 298" {727 |}~ K 2 - D (wy = 8u” - €)
Yko ro L Y
o
(3)
mz Q

Iy

20" '0 [ 2 2 = .

i po (wz - bw =-EY[ (1 + 2¢n a/rb) (1 - (1 + 1) eu)
This equation differs from the results of all earlier work in that the
approximation w = znzo/yo has not been made. Also, the first term

on the second line is new,

8. Nonresistive Instabilities

Equation (3) has some unstable roots due to the coupling of
longitudinal and transverse modes of oscillation. The instabilities per-
sist when the wall conductivity is infinite. The instabilities are low
frequency in the sense the transverse component of their motion is associ-
ated with the slow rotation frequency wg = ”'”7/(neoly°)‘

The v.am can also oscillate transversely at the fast rotation frequency,
Rgo/vos Dut there are no nonresistive instabilities associated with
this resonance.




We can clarify the origin of the nonresistive instabilities by

simplifying Eq. (3). We assume m% < n:;/yg. 2wl <€ w% and
obtain
1 lzfrg - wz wqwg (aw - 2 BZ/Yg)
P = o (1+22na/r) - = 1
T Po b 2 V4 ] ?
Aw Aw (Aw - mB)

(3a)
where o = y%/(l -n-ngr 2/az) The function P(Aw) has a dif-

ferent character depending on whether fug| < 12, /13 or |ug|

> znzolyo, as shown 1n Fig. 2. For typical betatron parameters, the

point Im | =12, /yo occurs approximately at vo = vo.., =

[4v rq /a2]‘/3 where v is Budker's parameter. When vy < Yy .1,

the roots of the quartic P(aw) = 1 consist of two complex conjugate pairs.
For yq > Ytran * "€ have two real roots and a complex conjugate

pair. We note that the conventional negative mass instability® is not pre-
sent in typical modified betatrons. The derivation of the dispersion rela-
tion for the latter instability involves the replacement of Y¢2 = {1 -
w?rg2/22)-1 by yp? = (1 - Vp2)-! in the field equation. This proced-

ure is valid only if 2vyq (1 + 2¢n a/rp) < 1 which is not the case for
modified betatron parameters (cf. Table 1).

Frequencies and growth rates for the ¢ = 1, 2, 3, and 4 nonre-
sistive modes obtained by solving Eq. (3) numerically for the parameters in
Table 1 are given in Figs. 3, 4, and 5. As we have seen, for yg <
Ytran there are two unstable modes, one with « > znzo/yo. the
other with w < 18, /yo, and we term these modes “fast” and "slow"
accordingly. In Figs. 3 and 4, only the slow modes are depicted for clar-
fty. The maximum growth rates are for y, > Yeran® and since most of
the acceleration period 1ies in this region, we shall examine the region
more closely. For g » 2yq2 » 1, Eq. (3a) reduces to

Aw (sz - sz) + v (1 +22n a/rb) masz/yo3 = 0 (3b)




The condition for this cubic in aAw to have complex roots is v(l +
2ena/rp) walvg® > 2 wB/(3/§). This criterion yields the upper bound
on the unstable range of y,, namely

Yooy = (6/3vr (1 +2wtna/r) s 360)1/2

where we have assumed wg € 2Rz0/vo. This expression gives Ymax
= 153 for the parameters in Table 1(a). The exact numerical results give
Ymax ° 156.

For yo? 2 the complex roots of Eq. (3b) are given

approximately by

€ Yax

5. 2..1/3 _ig
oBeo)d ®

1

Aw = [Yov £(1 + 2 2n a/rb)/(2r

where ¢ = 2n/3, 4x/3. Thus, the growth rate scales as 2!/3, B-2/3,

etc. For the parameters in Table 1(a), this expression yields = 6.81x10"3
+ 1 2.4x10"* for y, = 50, compared to the exact answer w = 6.82x10-3 +

i 2.1x10-*. Numerically we find that throughout most of the range of this
instability we have Aw = wgs SO that the mode is mostly transverse in
character. The conventional negative mass instability is longitudinal in
character, being associated with the aw = 0 resonance.

A comparison between our dispersion relation, Eq. (3) and that
in Ref. 4 is given in Fig. 6. The mathematical differences between the two
dispersion relations were described in Sec. IIA. Equation (3) gives growth
rates which are two to ten times larger than those from Ref. 4. We discuss
the effect of a thermal spread in energy on these instabilities in subsec-
tion D below.

C. Resistive Wall Instabilities

The presence of resistive material in the walls of the betatron
gives rise to additional instabilities,* and modifies the growth rates of
nonresist:ve instabilities. To illustrate this effect, we have chosen a
stainless steel wall, for which the conductivity o is 5.2x10® in normalized
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units (see Appendix). The results for the ¢ = 1 mode are shown in Fig. 7.
The resistive wall has l1ittle effect on the nonresistive fnstabilities.
However, some modes whose growth rates are zero for g = «» are driven
unstable by the resistivity. They are, the fast mode in the region

Yo < Y¢ran and a slow mode in the region yq > Yeran® denoted

by A and B respectively in Fig. 7(a). (In Fig. 7(b), branch A' is unstable
even for ¢ = w.) Branch B is due mainly to the term ¢, in Eq. (3). The
growth rates of this branch are much smaller than those obtained by using
the approximate ¢;; in Ref. 4. Since the resistive modes are driven by the
boundary condition at the wall, they are sensitive to the value of a, the
minor radius of the torus.® This is why the resistive mode growth rate is
smaller in Fig. 7 than in Fig. 6 (cf. Table 1). The growth rate is approx-
imately independent of Yo

The slow mode associated with the toroidal magnetic field cyclo-
tron resonance, w = ’”zo/Yo - “eo/vo’ is also driven
unstable by wall resistivity.® As indicated in subsection B, none of the
modes associated with this resonance are unstable when g = =. With finite
wall conductivity the mode, which is primarily a transverse oscillation,
becomes unstable when  goes through zero and becomes positive. In a beta-
tron, on =Y, during the acceleration, so that the instability
turns on when R0 ° neO/z and continues for the remainder of the
acceleration period. This behavior is shown in Fig. 8. Again, the differ-
ence in growth rates between the two parts of the figure {s due mainly to
the differences in the quantities a and Beo in Table 1. For large

Yor the growth rate is approximately independent of Yo

D. Practical Implications for Betatrons

For the sample parameters given in Table 1, it is clear that the
nonresistive instability in the region vy, > Yeran is the most import-
ant instability. Thus, for the parameters in Table 1(a), the number of e-




foldings of the £=1 component during a 1 miilisecond acceleration time is
about 4000. This result is for a monoenergetic beam, and gives an upper
bound on the growth. We can estimate the effect of a spread in beam energy
as follows. The thermal spread enters the model in the combination u -
2(2,,/v0 - kaPg), where aPy is the spread in canonical toroidal

momentum (cf. Eq. (4)). The instability for y4 > Ytran is associated

with t-= resonance pw = wg- Therefore, a small-thermal-expansion for

this mode is an expansion in the parameter e2=(2kaPg)2/(sw - wB)z.

If ¢2 €1, Landau damping is negligible, whereas if ¢2 > 1, we expect sig-
nificant damping. As an example, we use the numerical results shown in
Fig. 3(a), and assume an initial spread in y4 of 5%. Then, for the =1
mode at yo = 50, we obtain e2 = 4, so that we can expect a significant
reduction in growth rate. A more rigorous treatment of thermal effects is

needed to confirm this result.
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111. THERMAL EFFECTS ON RESISTIVE INSTABILITIES

It has been suggested* that a moderate spread in beam particle
energies may reduce instability growth rates to acceptably low values
through Landau damping. Here we look at the effect of a thermal spread on
the transverse cyclotron resistive wall instability. We choose this case
because the dispersion relation, Eq. (4) is relatively simple and does not
require numerical solution.

A. High Frequency Limit: &/a << 1

From Ref. 4 the approximate dispersion relation for the cyclo-
tron mode including thermal effects is

1+ gl AUP) P - 0, (4)
w, - 8w % Amao/yo

where, in normalized units,

Aw -’-w-!(nzo/yo-kAP) s
(o= 1 1 1
2 2 T -n-n ’
Yo' Y S
00 0
r 2 QZ
2 2,2 11 .22 s 20
2 ng (1 - r, /2 ) [1 By Yo (1 + 1) _;Z' 3 ] ';'Z
0
1/2
ow
mrz = L% - ns) n:olyoz R (n = 1/2 is assumed)

g(aP) = distribution function of toroidal canonical momentum
spread. See Appendix for additional definitions.
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00/Yo = (8w + £kaP - o)) (4w + 2kaP - a;). Assuming

Write aw? - w2 7 aud
laz] >>a;], the instability comes from the following choice of roots,

(5)

= wr Yo
b | Q

s a, = ~Q. /y. .
60 2 80’ To

For g, choose a flat-topped distribution function,

g(aP) }5%}—— for 'AP! <aPy
0

(6)

glaP) 0 for 'AP' >8Py .

Performing the integration in Eq. (4), we get

2
1+ Rs o Awo - zkAPO - o ) Amo + lkAPo - o 7)
szAPo(al - a,) Auwy * 2kaPy -y Bug = tkaPy - a
0,

where buy = 0 - 22 0/70. The mode we are concerned with has
bw = ap. To do a small-thermal-spread expansion, we assume kAP°<< bw - ap.

In what follows, we shall in essence be checking the consistency of these

two approximations. Expanding Eq. (7), we obtain

92 (kAP )2
- Aw - a 3 l )
a2 o "2 (Awo - “2)
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Assuming §/a << 1, the real part of the frequency, Auwp, is

/ o 1 (2kap ) o
bw, = - q_ /vy ey + —_— 8
r 8o 0 B0/ Y0 3 (Awr- az)
Our expansion parameter is thus
s lkAPO _ zkAPoneolyo
Aw , - a

r 2 ns

With AP° H Ythro’ and Yo large enough such that ng << 1, we have
2
82,074 Yth
[ A x nr .
00 Yo

If ¢ <<.1 for a given choice of parameters, then our small-
thermal-spread expansion is valid. In this limit, there is no Landau damp-
ing from a flat-topped distribution. If ¢ >> 1, on the other hand, the
phase velocity of the mode lies well within the distribution of particle
velocities. The mode is then highly damped. Putting in numbers from Table
1{a)with vy, = 50, we obtain ¢ = 3.3x103(yth/y°). Assuming a
10% spread in Yo at the beginning of the acceleration period, we have
Yip © 0.5. Thus ¢ = 33 at Yo © 50. Consequently, there will be
significant Landau damping of this mode.

B. Low Frequency Limit: o = 0

When w = 0, the small-thermal-spread expansion of Eq. (7) leads

to
n2
R T LA (R S I (9)
@2
\ 2
where nio = ns(l - rgla ) Q:O/yg , and n = Bzyi(rg/a3)(2/o)1/2. The

10




unstable solutions to Eq. (9) are

a 2 n 2/3
$0 £ i¢
w = 14+ e , (10)
Y] 770 ( 3—)

60

where ¢ = /6, - Ta/6. In this case, we obtain

A ] 1?2 [ %o o
€ o '2?; [ 28 Z
For the parameters in Table 1(a), we obtain ¢ =« 27(yth/yo). Thus,

for an initial 10% spread in Yo there will be substantially less
Landau damping in this case than where §/a << 1. For the parameters in

Table 1(b), e = &4(v,,/v),. In this case, Landau damping will be
negligible, and Eq. (10) shows that there will be a slight increase in the

growth rate due to thermal effects.

2/3 1/3
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IV. SUMMARY

We have rederived the dispersion relation for 1inear instabil-
fties in betatrons based on the simple model of Ref. 4. Our analysis shows
that at high beam energies, the dispersion relation does not reduce to that
of the conventional negative mass instability. Instead, we find a mode
which is primarily transverse in nature. Furthermore, we obtain growth
rates which are from two to ten times larger than those obtained in pre-
vious calculations. We have estimated the effects of a moderate spread in
beam energy on nonresistive and resistive instabilities, and find that sig-
nificant damping is expected. A more rigorous calculation is needed to
prove this.
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APPENDIX
DERIVATION OF DISPERSION RELATION

Figure 1 illustrates the physical parameters of the system. The
beam is modeled as a line of charge. 1In equilibrium, it is situated at .
r=ro2z=0, and executes a cyclotron orbit in the mirror B; field. ;
As pointed out in Sec. 1IA, only the transverse motion of the beam needs :
to be considered when computing the perturbed transverse fields. When the
center of the beam is displaced rigidly to position (rg + ar, az), it
experiences the following fields:"

1]

Applied fields: B B,o (1 - nar/r,)

Z

(o2}
| ]

" 'Bzo nAr/ro . (A1)

Beo (1 - Ar/ro)

L2
«

o Induced fields:

vl (1 - Y'i/az) £E)az ,

2
r
- = -% - (1 - ri/az) £ lar, (A2)
a

2 1/2
® " 2
where £ = (1 + 1) 7
a

13
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In our normalization scheme, frequencies are normalized to w, which is
defined by c/w° = 1 cm. Lengths are normalized to C/“o' velocities

to ¢, fields to ma»o/e, and densities to wgm/4ue2, where m and e

are the electronic mass and charge respectively. Thus, for example,
Bzo and nzo have the same normalized values. The conductivity is
normalized to w /4n. In Eas. (A1) and (A2) above n is the external
field index, i.e., r 3/dr 2n Bz(rg), ng is the equilibrium beam
density and Veo is the equilibrium azimuthal beam velocity. A positive

beam charge is assumed. The equations of motion of a beam particle are,

2

Ve dpr
Yy 7t g ¢ Bt VB, - VB ’
@, +V v
Tt - & rBs = VeBy ’
vy dp
o' r 8 . }
r M 3 Ee * szr vrBz g

where (Vp, Vg, Vz) and (py, pg, Pz) are the velocity and momen-
tum components of a beam particle. Linearizing these equations, we obtain

B B
. 2 - 60 2 20 (1)
+ - —_— = - Y ,
AT (mr glar + al Y, Yo T o
pi + W -TDaz-ab-2 =0 , (A3)
b A 10
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where the superscr;ptél) denotes perturbed quantities,
2, 2,2 2, 2,.2vp2 1.2 o o 2
wp * (1 -n-ng rb/"z)azoho’ wp = n - ng rp/a%)B Mg Ng = MG/ (2v,8, )
- 2 .
and ¢ = nsygvgg(l - r/a )Eﬁf;/vg. Assuming ar, Az - exp (-iut + i2e),

we obtain the following solutions to Egs. (A3),

2 2

P L A
ar = ,
D
(A4)
vél)vg (8,077 (Bgo/Y,)
AZ = D ,

- 2 -
where Aw = w - lVSO/ro and D = (sz - wi + £)(dw - w5+ £) - sz Beg/yg.

Using the third member of Eqs. (A3), ve(l) can be expressed in terms

of t (1), the only unknown. To close the system, we obtain a field
equation for Ee(l). We assume that the beam excites only the m = 0
component of Ee(l). This is reasonable provided rp << a, since

higher m number components go to zero at the center of the minor cross
section of the torus. Further, we assume that only the lowest radial mode
is excited, so that the eigenfunction is approximately constant over the

beam cross section. This is valid provided |z/r°| - le << 2a/a. Then
from Maxwell's equations we obtain
2.(1) _ L, (1) i og(1)
v Ee iLp /r0 - 1wJe R (AS)

where “1" refers to the transverse direction, p(l) is the perturbed
charge dEnsity, and.ﬂ}%s the perturbed azimuthal current. Since the
eigenfunction 1s assumed to be flat in the center, the perturbed charge
density p(l) is proportional to the perturbed line charge v(l). To
obtain an expression for v(l) we use the continuity equation for p,

15
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ap/at tve. (p!) = 0. (A6)
Put p = w8(R = Ry(0)) 8(¢ - ¢o(8))/R, where R, ¢ are local cylindrical

coordinates (r - ro = Rcosp, 2 = rsing), and (R, ¢,) is the
position of the displaced beam. Multiplying Eq. (A6) by [RdRd¢, we obtain

vV N}
v r ) 8, .
R i U (AT)

Linearizing, and replacing v by p, we have

pu) = (lpovél)/ro - powr(l)/r‘o)/Aw
Je(l) = w(l"op(l) + r(l)po)/l

where Po is the unperturbed charge density . Equation (A5) becomes

(1) 2.2
W21, ot AL S SR I I PR
) =z ‘4 T 4w -7
Yiuw t‘o Yo '3
2
©PoBr/Yo |, 2 2 =1
- 20vbo (wz - A - E)Ee
el (A8)

To obtain the dispersion relation, we need to solve

el - all) rer
el = 0 rp<r<a
P2l - ~fout ! r> e,
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together with the following boundary conditions,

aE(1)
g{l) ) c
e * Tar ontinuous at r = Ty
(1)
1/2 »E
E(l)' _w(i +1) %J__ 8 at r = a.
® w® - 28/ ° or

As a result, we obtain
1 2 .
1 = Fogrp (1 +2ena/ry) [1-(i+ l)sn]

erZ

wB, /vy _
—trr - 30y [, 4 Sz <w§w2-g>]
Yhv To £ Yo
+ o (f - auf - T) (A9)
?DT;A'Z wy - A - % ’
where
1/2
wzri/kz (2/owaz)
€1 -

(1 - Wr2/ef)(L + 2en a/r,)

For a negatively charged beam, we let Bzo + - Byy
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TABLE 1. SAMPLE PARAMETERS FOR MODIFIED BETATRON

®
The values for Beo are approximate practical upper and lower bounds.
o QUANTITY SYMBOL VALUES
(a) (b)
Major Radius r 150 ¢m 100 cm
® )
Minor Radius a 5 cm 10 ¢m
P Beam Radius Ty 1 cm 1cm h
Toroidal Magnetic Field Beo 6 (10 kG) 1.5 (2.5 kG)
® Beam Current v 0.59 0.59 (10 kA)
Beam y-factor Yo 5-100
. 3 .
Transition Energy Yiran 12.9 6.2
Acceleration Time T, 3 x 107 cm (1 millisec)
]
@
°
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> Figure 2. Illustration of nonresistive instabilities in betatrons.

The dispersion relation is P=1. The roots are denoted by

r, f, etc., and brackets (,) denote complex conjugate

pairs. 1In (a) and (b), we depict two regimes of instability

in the modified betatron. In (c), we show the origin of the

longftudinal negative mass instability, which requires
) A= 2vy (1+21na/rb)(l.
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Real Frequency (v )x 1072

L3 1.00} -

[ | 1 1 1
;':i ~ °'°°o v 40 60 80 100

§.00 T T T T

£
Growth Rate (r)x 10°4

Tk Figure 3. Real and imaginary parts of the nonresistive 2 = 1, 2, 3, 4
o modes obtained by so1vin? E$. {3) numerically for the equil-

fbrium parameteri given in Table 1(a). The frequencies are
in units of 3x1010 sec=1, For v, < v¢ran, only the slow
mode is included (cf. Fig. 2).

) 22




- i M B i N il e har it o AP i S s Pt el At Al A ong
| - - . P B « Ve Tmge T e

fa e Pkt ——)

8 "
1 ] — ]
e
>
L g
—
-
<
v
¢ £
-
~
' -
"
- 8 -
[T
> L
o=
o
o R
oL
- ©
o §"
e 1= _E
Q
st
® .-
, wg
Ss
52
s
[ . 58
|
- & .
> -
g 2 = £
~ - - ‘ e -
@ v
¢-01 x (1) #aey ymoun
[

23

- - -
ALY




s TS Y
T

-

T i

L il iafh g X

e

R

Akt A

SR

- T

R

™

NG AN

"

[E Ung bl YRTR™ L W S iy AR

T UILE UL )

4 vod3eIdq
-(e)] 31qe} 49 asoyl ade sJajawede
Yl .m_um._ za;@mmvo:ﬁ Ytk sapow 03ju0 ujof sapow mo|s 3
appgn ¢ A< A uoybad auly vt 21111140358} ayy 030 uiof
\ uedd : Luedy, 0, uotbad
sopow IS®) ! A ybnosul pujob vl >
) vt moZ:ESmE arpSES34u0U ayy 4o sayoursq (sousl e aamd
pi10s) mois put (sauit paysep) st W 0 saled uWON S

uedd, . o) .
0°51 ool S 00
|
”
1= W\\s. ” .
2/ b
vl 1 |
¥
/
¢ /

g . Rk ol s ¥ ek 3 e e e 1 iy — gy ¥
AT RIINe. y BB B R R e FIPLEID g P

(]

. W

“11.qu
N P



-weded uU04LIIQ YL A3} |1QRISUL T = T IAIS|SIJUOU

oy 02

(@)1 31qe] W4y 3Je S4I

W3 Joj ‘(8

3A4N)) ¢ °J3Y U} UOJIL|3J UOJSAIASIP IY) WOLy PAULRIQO ISOYY pue
(v 3A4n)) (€) b3 wo4j paupeIqO S3jes PIM0LD uIIN3aq uos juedwo) °9 unbj4

ued) A

100°0

00° 1

=100°2

00°€

y-01 X

25

-
b

n,

ONCS TR

)

N

-
-
" -

~

40N

Y

-

ARt

26

X0

AL



ra 10"

Figure 7.
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Growth rates for the £ = 1 instabjlity with perfectly conducting
walls (dashed 1ines) and stainless steel walls (solid lines). _
Part (a) 1s for the parsmeters in Table 1(a), and part (b) is for
parameters in Table 1(b). Branches A and B are modes which have
become unstable due to the wall resistivity alone. In part (b)
the solid and dashed lines are indistinguishable (the growth rate
:f Sranch B 1s approximately 4x10-6 cm-1). Branch A' {s unstable
oreven c = =,
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Figure 8. Growth rates of the transverse resistive wall cyclotron mode.
Part (a) 1s for the parameters in Table 1(a) and part (b) is
for those in Table 1{b). For (a), & = 20 and for (b) ¢ = 5.
P The Instability turns on when Qg0 flgo/L 1.€., Yo = Beoro/%
(v 45 for case (a)). The height of the initial peak is
independent of ¢ and vo (cf. Ref. 6).
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RESISTIVE WALL INSTABILITIES IN THE MODIFIED BETATRON

Brendan B. Godfrey and Thomas P. Hughes
le MISSION RESEARCH CORPORATION

e ABSTRACT

Resistive wall instabilities in modified betatrons are analyzed in
several limits. The moderate frequency, negative energy, w=1 spacecharge
and cyclotron waves are found to be most dangerous, potentially capable of
disrupting acceleration for typical betatron parameters. A moderate spread
in electron energy can, however, stabilize these modes.
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Spacecharge 1imits the circulating current in a conventional betatron
to tens of amps, unless a very high initial electron energy is assumed.
Adding a strong toroidal magnetic field, however, increases this 1imit by
some two orders of nagnitude.1'3 The toroidal field also improves beam
stlbility,‘ while a higher current has the opposite effect. This
report discusses resistive wall 1nstab11it1ess in a high current elec-
tron betatron with an applied toroidal magnetic field, referred to as a

modified betatron.

Resistive-wall-driven instability occurs for both slow spacecharge and
slow cyclotron beam modes, and over a wide range of frequencies.6
Approximate analytical growth rate formulas are obtained in this report for
the various branches of the resistive wali instability on a cold beam. The
growth rate expressions are then evaluated for a typical set of modified
betatron parameters. We find the spacecharge and cyclotron wave instabil-
ities at frequencies comparable to the electron circulation frequency to be
the most dangerous. Although slowly growing, they persist through a large
fraction of the acceleration. If one can produce a spread of a few percent
in electron energy, however, the modes can be stabilized. Alternatively,
they can be avoided by 1imiting acceleration times to tens of micro-

seconds.

The structure of the resistive wall instability dispersion relation is
obtained for highly conducting cavity walls by a perturbation expansion
(formally, a Rayleigh-Ritz approximation) about the beam modes in a per-

fectly conducting cavity. This procedure yields

20u-u )V = P, ()
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where wgy is the unperturbed wave frequency, U is the wave energy, and P

is the outward Poynting flux at the cavity wall due to finite conductiv-

“ity. P is evaluated easily in the Tong wavelength 1imit to be’

ix/4

P = RusB® e (2)

Here, R is the minor radius of the toroidal cavity, B is the wave magnetic
field at the cavity wall, and § is the skin depth,

§ = J2/ow . (3)

Frequencies and conductivities are expressed in inverse cm; the speed of
1ight 1s unity. Also, a factor of 4» §s absorbed into the conductivity ¢.

Solving Eq. (1)-(3) for the perturbed frequency yields

01/2 w=-w) = 2(U/w)"

in/4
o [ )

l(wl/Z

c)RB2 e (4)

The right side of Eq. (4) is approximately independent of frequency,
because U « » for beam modes.8 (This assertion is incorrect for m = 0
spacecharge waves. Nonetheless, the resulting dispersion relation has been
found numerically to apply reasonably well even then.7) Evaluating the
wave energy to complete the derivation is straightforward but tedious.
Instead, we extract the needed term from the recent work of Sprangle and
Vomvoridis.9

These authors determined the imaginary part of w (the growth rate) to

be

0 Y 1602/R3
® r = 2 3 (5)
_ 8, )
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with

a2 = 1420 - 2n 2R ] (6) s

for moderate frequency m=1 waves. The beam radius is a. Otherwise, sym-
bols are defined as in Ref. 9. Recasting Eq. (5) as

2,2,3 1
. sa /R .
ro- —2-5;‘— . (7)
we see that toroidal corrections to the cylindrical drift tube dispersion J
relation enter only through s. Comparison of Eqs. (4) and (7) yields
2.2,,3
w. a /R
wllz(w - wo) = -21720—A— ft ei“M (8)
(4]
® <

For increased generality we have included a geometrical factor f by
analogy with cylindrical drift tube resu1ts.7

1 (za/R. )
2 2,2 5 2 ms 1l 0
£ = (m° + 2°R°/R.%) (9)
3 0 [Im +1 (zﬁle) + Im -1 (lR/Ro) ]

Ry is the major radius of the torus, I and K are modified Bessel
functions, and ¢ amd m are the toroidal and poloidal wave numbers. With
a/R and tR/Ry both small, f is aproximately 1 for m = 1 and varies as
m?(a/R)z("*I? for m > 1. The instability is weaker for m = O where

f falls off as (ea/Ry),2 and for m < O (wave poloidal helicity opposite
that of the electrons), where f decreases as m(a/R)Z(""l)

For slow cyclotron waves, characterized by

w = 2 nz/y - “e/' . (10)
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the peak growth rate from Eq. (8) occurs at wg = 0.

22,3
a /R 2/3
. o 13 2 f ALIL (11)

QOA

-+

The constraint wo ~ O implies £ = Rg/0;. During acceleration, the
vertic: magnetic field a; (and the beam energy y, which is proportional
to ;) increases adiabatically. Hence wp ~ 0 is satisfied for only a
1imited time period,

fed
)
o= 2 %{- at (12)

Equating the instability band width Aw to the growth rate I', replacing 2g
by £az, and solving for At, we obtain the total growth occurring as the
instability passes through resonance

2

T
r at . l—rﬂ—zﬁ) a;}a-t- . (13)

Eq. (13) ‘s maximized late in the acceleration cycle, when y is large and
the resonant & value is smail.

After passing through wy ~ 0, the cyclotron resistive wall instabil-
ity for fixed ¢ does not, of course, cease but instead transitions smoothly

to a lower growth rate regime.
2.2,,3
w, & /R eiﬂ/4

- -1/2 -1/2
w m°+o w, -2@— f:

(14)

Setting m = 1 recovers Eq. (5). Although the growth rate of Eq. (14) is
somewhat smaller than that of Eq. (11), the corresponding total growth of
the former,

3

2.2
a2 fep R dt
(rAt)eff- (20) -p—a-e——' ft W R (15)
5




may exceed Eq. (13). The integration in Eq. (15) extends from the time at
which wg fs greater than a few times the w in Eq. (11) until the end of
the acceleration.

Parallel instabilities occur for slow spacecharge waves, characterized
by

w, ® mz/y - Mg , (16)

0
where wg is the beam poloidal rotation frequency, a small quan-

tity.g For growth to occur at the rate in Eq. (11), we must have m »
2Rz/yug. Even for £ as small as one (there is no £ = m = 0 spacecharge
wave), m must be quite large. Consequently, f, always is small near g

= 0 for spacecharge modes, and resistive wall growth is in this case neg-
1igible. On the other hand, for modest positive values of wg instability
of slow spacecharge waves is described by Eq. (14), with growth rates com-
parable to those of slow cyclotron waves.

Breizman and Ryutov have shown the existence of another, high fre-
quency branch of the resistive wall instability for spacecharge
modes.10:11 7o second order in R/Rg, the growth rate for this insta-
bility is identical to that in a straight tube. Peak growth for the m = 0
mode occurs at £ = yRy/R, with y the normalized electron energy.

172
1
* - w2 ) )

Note that this expression is independent of the magnetic guide-field
strength. At long wavelengths the growth rate falls off as 11/2' until

it merges with the lower frequency branch. The growth rate decreases more
gradually at shorter wavelengths. Interestingly, the instability persists
for ms O, although with reduced growth rates.7




Numerical studies with the laminar beam stability code GRADRIZ,13
confirm the absence of a corresponding high frequency cyclotron wave resis-
tive wall instability.7

We 11lustrate the relative importance of the various forms of the
resfstive wall instability for the typical modified betatron parameters
1isted in Table 1. A stainless steel tube wall, with normalized conductiv-
ity o = 5.24 . 106 carl, is assumed. (The conductivity of copper is
about forty times larger.) Inserting these values into Eq (11), we find
r =40 . 10-5 ¢l for m = 1 cyclotron waves at w, = 0. The corres-
ponding skin depth is § = 0.07 cm; the cavity wall must be at least this
thick for Eq. (11) to be valid. The growth rate value just given assumes
A = 1. The increase of o near the end of the acceleration period reduces T
by less than 25%. Equation (13) {is maximized by y - 70, where the 2
value for the wy = O resonance drops to one. Total growth is rat = 3.6
in this case. After passing through the wo =~ 0 resonance, the ¢t = m =1
slow cyclotror. mode continues to grow, at the rate in Eq. (14). Evaluating
this expression for the typical frequency wg = Qz/y yields T = 5.1 -10'6 cm'l.
Growth occurs over about 1/3 the acceleration period, or rat = 55 when the
wo = 0 contribution {s included.

As already discussed, growth of slow spacecharge waves near wg = 0
is negligible. At higher frequencies. the growth rate of the g =m=1
spacecharge wave is comparable to that of the corresponding cyclotron
mode. Since growth occurs throughout the acceleration period, rat = 150.
At sti” higher frequencies m = 0 spacecharge waves grow at a maximum rate
ofr = 1.3 . 10-6, or about 25% of the intermediate frequency growth
rate. It is important to bear in mind that these growth estimates probably
are uncertain by a factor of two, due to approximations made.

.
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TABLE 1

Typical Modified Betatron Parameters Used in Evaluating Resistive Wall
Instability Growth Rates.

Torofda) Magnetic Field Be 2.5 kg
Vertical Magnetic Field (Initial) B, 115 g

Toroid Major Radius Ro 100 cm
Toroid Minor Radius R 10 cm
Beam Radius a lcm
Beam Current v 0.59

Beam Energy Y 7-100

3.107 cm

Acceleration Time T




.................

The preceding analysis ignores thermal spread in the beam electron
velocities. As a result of the toroidal geometry, a spread in electron
toroidal velocity can smear out the transverse resonances associated with
the resistive instabilities. In a companion paper we find that the
required spreads in toroidal and transverse velocities are achievable from
a few percent spread in initial electron kinetic erler'gy.14 A similar
conclusion was drawn in Ref. 9, based on a Lorentzian distribution of ener-
gies. Of course, this damping of spacecharge and cyclotron wave instabil-
fties by a spread in electron velocities is ineffective for low frequency
modes. As we have already seen, however, these latter modes are not a ser-
jous problem.

® In summary, we find that the m = 1, low ¢ spacecharge and cyclotron
wave instabilities are the most dangerous of the various resistive wall
phenomena identified for modified betatrons. Amplification factors of
150 - 1055 and 95 - 1024, respectively, are predicted for

@ the parameters in Table 1. Successful operation of a modified betatron

requires cutting the growth exponent rat to about unity. (Computer simula-

tions suggest that initial perturbations may be quite large.ls)

Employing more highly conducting cavity walls provides a factor of six.

Reducing the acceleration time by an order of magnitude would then effect-

®

‘ ively eliminate these instabilities. Alternatively, an initial spread of a
few percent in the electron energy should be sufficient to damp out the
modes.

@

We are indebted to M. Campbell, M. Jones, D. Sullivan, and particu-
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1. INTRODUCTION

High current racetrack beam induction accelerators and modified beta-
trons are a subject of increasing interest as sources of high power elec-
tron beams for free electron lasers, flash radiography, and other applica-
tions. The racetrack induction accelerator geometry is illustrated in Fig-
ure 1. The beam is injected from a conventional pulsed diode beam genera-
tor into the drifttube, is progressively accelerated as it repetitively
passes one or more induction modules, and then is extracted from the accel-
erator for its intended use., Beam extraction may even be unnecessary for
microwave applications, because a slow-wave or rippled-magnetic-field cav-
ity can be inserted in a straight section of the drifttube.!

Most beam stability studies for high current recirculating devices
have dealt with negative mass and resistive wall instabilities.?-5 How-
ever, experience with linear induction accelerators suggests that beam
breakup and image displacement instabilities due to beam interaction with
the induction modules and other discontinuities in the drifttube may be
significant.5-7 The beam breakup {nstability arises from a resonant
coupling between beam transverse oscillations and m=1 electromagretic cav-
ity modes localized to the acceleration gaps,® while the image displacement
ifnstability is caused by interrupting the m=1 beam image current in the
drifttube wal1.? Clearly, the two are interrelated; in some contexts the
image displacement instability can be viewed as the low frequency limit of
the beam breakup instability.,

This paper extends instability results developed for high current lin-
ear induction accelerators to cyclic devices. The primary differences are
(1) that the beam passes the same few gaps again and again, and (2) that
the curved beam trajectory couples longitudinal to transverse motion, per-
haps leading to a hybridization of the negative mass and beam breakup
modes. Experience with interaction among instabilities in other situations
suggests that the latter {item {is the less important of the two.!?
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Therefore, we consider only the former aspect, periodicity of the inter-
action, and omit curvature effects. As in earlier calculations, we assume
that the beam propagates at the speed of light, that lateral displacements
of the beam are small and rigid, and that the gaps are narrow compared to
the beam oscillation wavelength, The consequences of relaxing these
approximations for the image displacement instability under different cir-
cumstances is discussed elsewhere.? We expect the three approximations to
be adequate for present purposes.

A general dispersion relation for a multiple gap racetrack induction
accelerator 1s derived in Section I1I. Because the resulting expression, a
determinant, fs cumbersome, we then specialize to the case of identical,
uniformly spaced gaps, obtaining approximate analytical growth rate form-
ulas for the beam breakup and image displacement instabilities. Section
111 illustrates instability growth for a 1 kA electron beam accelerated to
40 MeV through fifty cycles of a four gap device, (These parameters are
based on an induction linac developed by the National Bureau of Standards
and now befng modified at the Nava) Research Laboratory,!!) First, growth
rates are estimated based on the formulas of the preceding Section. Then,
more precise numerical values are obtained with the beam transport code
BALTIC, including the effects of acceleration and inftial transients. Ous
findings, summarized in Section IV, are encouraging: The image displace-
ment instability fs negligible, and the beam breakup instability is manage-
able provided that the mode quality factor Q is kept low. A comparison
with the negative mass and resistive wall instability growth rates also is
provided,

11. DERIVATION OF GROWTH RATE EXPRESSIONS

In the long wavelength, paraxial approximation the linearized equation
of transverse motion for the beam centroid is given by®,10
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-% 22—25 = ZFj c(z-zj)g

Here, £ = x + iy 1is the (complex) transverse displacement of the beam
centroid, p is the beam density, y is the beam relativistic energy, a is
the beam radius, R 1is the drifttube radius, and wc is the cyclotron
frequency for the magnetic guide field. Time is normalized to the beam
axial velocity, which is in turn assumed to be equal to the speed of
1ight, The last term on the left side of Eq. (1) represents the combined
transverse forces on the beam from its image charge and current in the
smooth drifttube wall. Discontinuities 1in the wall are treated as
ifmpulsive forces appearing on the right side of Eq. (1).

We begin the derivation of the dispersion matrix by assuming the beam
parameters to be constant in time and Fourier transforming £q. (1).
d d Ye
(1(.\)-3;) (10)--a-i + 1 Y—.) 13
(2)

1 a? -1 YF. 8(z-2.)¢
7 gty lh j

As mentioned in the Introduction, we shall take account of time-varying y
in Sec. 111 by direct numerical integration of Eq. (1).

Next, Eq. (2) is solved for g, treating the right side of the equation
as a source term. This can be done using a Green's function or, equiva-
lently, by twice integrating the equation and imposing periodicity at z =
L, the accelerator path length. The result is

g% *w-.\ ’::;. 3
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vk, - k) g(z) =
(3)

N
(2$1nk+L/2)'1 jzl FJ ;(zj) exp[1k+(sign[zj - 2]L/2 - (zj -2))]
a4 X .
- (2sink_L/2) jzl Fj g(zj) exp[lk_(sign[zj -2L/2 - (zj - 2))]

where N is the number of acceleration gaps and Sign(x) is the sign of x.
The wavenumbers k., characterize the beam cyclotron and spacecharge waves,
respectively, as determined by the left side of Eq. (2), i.e., between

gaps.

k, = o+ (0 * lo? - 2007 WREIY ) 12y (4)

For typical {nd:ction 1linac parameters, k, ~ w + wc/y and k_ = w.
Although it may -t be immediately apparent, £(z) as expressed in Eq. (3)
is everywhere continuous; its first derivative is discontinuous at zj.

Evaluating Eq. (3) at each of the gaps yields the system of equations

v(k, - k) e (z) =
(5)

N
(Zsink"L/&')"1 jzl Fj ;(zj) exp[ ik (L/2 - Mod[zj - zz,L])]

N
- (251nk_L/2)'1 jzl Fj g(zj) exp[ik_(L/2 - Mod[zj - zl,L])]

The deter-

Here, Mod (x,L) is x modulo L, defined to lie between 0 and L.
minant of the coefficient matrix of Eq. (5) is the desired dispersion rela-
tion. In general, it must be solved numerically to obtain w.
analytical progress can, however, be made when the gaps are spaced uni-

formly and al) have the same response function F.

Additional
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L v(k, = k_) g (eL/N) =
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- (6)

£ a M

N (2s1nk*LIZ) F j{o €(JL/N) exp[ik _(L/2 - Mod[j - 2,NJL/N}]

% g Ml

: - (2sink_L/2) F jzo §(JL/N) exp[ik_(L/2 - Mod[j - £,NIL/N)]

2 Since its right side is a discrete convolution, Eq. (6) is readily
. solved by performing a finite Fourier transform. We find

oy

e v(k, = k) = F { (1 - exp[2nim/N - ik, L/N])"!

> (7)

e - (1 - exp[2nim/N - §k_ L/NY)™Y |

R

2

Y or, more simply,

o F k,L/2 - ¥m k_L/2 - wm

W

. The transform index m ranges between 0 and N-1. Still another useful

W5

N representation, reminiscent of results for nonrecirculating devices,
"‘ 158 )9

R

o

— cos[ (k, + k_)L/2N - sm/N] =
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A cos[(k, - k JL/2N] + sin[(k, - k_)L/2N] .
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For F/uc small these equation are approximately satisfied by ke = kp or
k. = kp, with ky & 2en/L. Correspondingly,

veu = K - (ot Lol - 2021RE 2 20 (10)

Instability may occur when « matches a resonant frequency of F or when the
right side of Eq. (9) exceeds unity away from a resonance. These two pos-
sibilities are realized in the beam breakup and image displacement insta-
bilities, respectively.

The beam breakup instability is caused by T"lno oscillatory elec-
tromagnetic fields localized to the acceleration gaps and adjacent drift-
tube regions. These cavity modes are conveniently represented by damped
harmonic oscillator equations for their normalized vector potentials,

¢? Yo d 2 wol] “02°a2
Co T & "% Mt T £(zq) (11)

Q is the cavity mode quality factor, while wg is its frequency. Coupling
between the beam and a cavity mode fis given by its transverse impedance
2]/Q. The transverse impedance is basically a geometrical factor, which
tends to scale linearly with the gap width,

fourier transforming Eq. (11) in time, we obtain for F = A/E

2
1 2
F e - Yo ’ :%Ué . (12)

© * tuwy/Q - w,
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The beam breakup finstability growth rate now can be approximated in the
usual manner by expanding Eq. (8) and (12) about w,, defined in Eq.
(10). The resulting quadratic in w - wn shows instability only for ki
= k_, with growth rate
W NZ 2 w, -w, 2 1/2
4 2 1l pa 1 n_"%
o-en = Vg il §x ¢t @@ -

(13)

Note that this derivation fails for sin[(k, - k_)L/2] too small; see Eq.
(9). More precisely, the instability growth rate is reduced whenever
|Nkn - uclyl is less than the absolute value of the right side of Eq.

(13) and finally vanishes when Nk, = we/y.

The image displacement instability arises due to interruption of the
beam image current at a discontinuity in the drifttube wall, such as occurs
at an acceleration gap. The analysis in Ref. 9 and 12 gives a force coef-

ficient
F o= iz. 25- (14)

The effective gap width ¢ is given by the physical width when the latter is
small compared to the drifttube radius R. In the opposite limit, 2 < R,
As already noted, growth occurs whenever the right side of Eq. (9) exceeds
unity, For F/u. small this happens only in a narrow parameter region
centered on tan[(k, - k_)L/2] = F/y(ky - k.), for which the growth rate is
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In the next section we evaluate these two growth rates for possible
recirculating induction accelerator parameters and then generalize our num-
ﬂ. erical results to include f{rregular gap spacing and beam acceleration by
computer solution of Eq. (1).

TI11. NUMERICAL EVALUATION OF GROWTH RATES

The four gap linear induction accelerator at the Naval Research Labor-
atory s an attractive candidate for a recirculating device. The accelera-
tion gaps are in pairs with the members separated by about 30 cm, The
® distance between the two pairs is arbitrary within reasonable limits, Here
we take the distance to be 200 cm, giving a total round-trip path length of
L = 460 cm. (The specific value chosen does not strongly influence our
conclusfons.) The principle m=1 gap normal mode is at 880 MHz with a
H. transverse impedance of 15 ohms and & Q of 60. Each gap provides an accel-

eratfon of 0.2 MeV, resulting 1n an energy gain for the electron beam of 40
MeV after 50 passes. A beam current of 1 kA and guide field of 2 kg are
assumed. These parameters are summarized in Table 1. Note that y in the
P table has been corrected for the spacecharge depression 1in the

drifttube and also that Z|/Q has been expressed in dimensfonless form by
dividing the transverse impedance by 30 ohms.

Although the four gaps are not spaced uniformly, a reasonable upper

¢ bound on beam breakup instability growth can nonetheless be obtained from
Eq. (13). We find T = 12.9.10-* cm-!, corresponding to about 30
e-foldings during the course of acceleration. (We assume wg = wp.)
The most obvious way of cutting this amplification to an acceptable level
’ 1s by reducing Q. Recent work at Lawrence Livermore National Laboratory on
short pulse induction accelerators suggests that a quality factor as low as
)
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TABLE 1. NOMINAL RACETRACK INDUCTION ACCELERATOR PARAMETERS

Path Lengths

Drifttube Radius

Beam Radius

Guide Field

Beam Current

Beam Energy

Number of Revolutions
Number of Gaps
Acceleration per Gap
Gap Resonant Frequency
Mode Quality Factor
Gap Transverse Impedance

Gap Width

L = 460 cm
R=7cm
a=1c¢m

B = 2 kg
1=1KA
U= 0.4 - 40 MeV
50

N=24

AU = 0.2 MeV
880 MHz

Q = 60

15 ohms

L =5caem

10

(wc = 1.173 em-!)
(v = 0.0588)
(y = 1.5 - 80)

(ay = 0.4)

(21/Q = 0.5)

N e LT Y Sy Y, Y. W v v v u




T T T TYN W ad
y B Rt e et sl gt i i g X B M Bt ant e sat am oo

o six is achievadble.!® For Qu6, T = 2.4¢10-* cm-!, or 5.5 e-foldings. As
many as eight e-foldings may be tolerable provided the gaps are not excited
appreciably a: *heir resonant frequency prior to beam injection,

o More precise growth rates can be obtained by numerically solving Eq.
(5) plus Eq. (12), and this is not difficult to do. Instead, we choose to
integrate Eq. (1) plus Eq. (11) directly using the computer program
BALTIC. The code was exercised extensively in support of the RADLAC radial

® pulseline accelerator program and so is well tested.!® BALTIC has the
advantage over a dispersion relation solver that {t takes account of beam
acceleration and of transients. It is, of course, much slower,

Table 2 summarizes thirteen runs of the BALTIC code. The quantities
N, Q, Wy and y were varied, but with NZ; /Q held fixed. Some calculations
involved an accelerating beam. Cases 1-4 illustrate the effect of changing
g =~ wpe Because kp = 0.014.n em=!, the pattern of growth rate
variation with wg in these four cases repeats itself with the same 0.014
em-! perfodicity in wg. It so happens that sin[(ks - k_)L/2] is smal)
for y = 80, the value chosen in cases 1-4, which reduces the growth rate
some, Setting y = 60 avoids this situation, increasing T by 25%, as
11lustrated in cases 5 and 6. The growth rate change caused by dropping Q
from 60 to 10, as in case 7, is consistent with Eq. (13).

The seven cases just discussed were for a single gap. Cases 8 and 9

treat two gaps evenly spaced. Growth rates are comparable to the single

* gap runs, as expected. The enhancement of T for case 9 relative to case 8
again arises from adjusting sinf(k, - k_)L/2].

Finally, cases 10-13 treat four gaps spaced as described at the begin-
® ning of this Section. Also, the beam is accelerating in these last four
runs. It 1s clear from the resulting growth rates that the gradual accel-

erstion which occurred has little effect on stability except to average

1
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TABLE 2. SUMMARY OF BEAM BREAKUP INSTABILITY CALCULATIONS WITH BALTIC

Case N Q () L (10 em-)

1 1 60 0.18 80 8.3

2 1 60 0.1732 80 3.3

3 1 60 0.17757 80 8.9

N 1 60 0.1787 80 8.8

5 1 60 0.18 60 10.0 ‘

6 1 60 0.17757 60 12.3

7 1 10 0.18 80 3.4 )

8 2 60 0.18 80 9.6

9 2 60 0.18 1.5 12.0

10 8 60 0.18 1.5-80 9.8

1 4 10 0.18 1.5-80 2.6 J

12 4 6 0.18 1.5-80 1.2

13 a 6 0.17757  1.5-80 1.6 +
q

12
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over wo - wp and sin[(ky - k_)L/2]. In case 13, wo was decreased
slightly to maximize growth at large y. Indeed, I increased by one-third
relative to case 12.

Figure 2 depicts the maximum transverse displacement of the beam as a
function of time for case 13, It and the other runs were initiated with a
uniform transverse offset of unit magnitude for the beam, The cavity modes
were initially excited at an amplitude consistent with injection of the
offset beam with zero risetime, a worst case assumption, The displacement
is seen to grow by a factor of about 3.6.

The image displacement d{nstability turns out to be insignificant.
From Eq. (15) its peak growth rate is 0.9.10-% cm~l, Since this occurs
only over a narrow range of parameters, however, we should expect a much
slow: r average growth during acceleration, Indeed, a four gap BALTIC run
gave no coherent growth whatsoever, and transient fluctuations amounted to
less than 15% of the initial displacement.

1v. CONCLUSIONS

In this report we have developed a simple theory of beam breakup and
image displacement {nstabilities 1in cyclic induction accelerators and
applied it to obtain growth rate estimates for a possible device. The
theoretical model takes recirculation into account primarily by enforcing
periodicity on the unstable transverse models, Drifttube curvature effects
were not considered, We find for the 1 kA, 40 MeV accelerator that neither
the beam breakup nor the image displacement {instability should be serious.
Specifically, with Q=6 and parameters otherwise as in Table 1 the bean
breakup growth rate is I = 1.6.10-" cm-!; the image displacement growth is
negligible.

13
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d For comparison, growth rates of the negative mass and resistive wall
(for stainless steel) instabilities for comparable parameters are of order
5.10~* cm~! and 0.2.10-* cm-!, respectively.3-5 Thus, the negative mass

® instability is somewhat more serious than the gap-induced instabilities in

this instance.

The accelerator path length L = 460 cm chosen for the numerical calcu-

lations is perhaps small for practical devices. Increasing L by lengthen-

g ing the straight sections of the racetrack geometry would have little

impa-t on any but the resistive wall instability integrated growth: Growth

rates of the gap-induced instabilities decrease roughly as L-!, so that

growth per pass remains fixed, while the negative mass instability grows

® only in the curved sections of the drift tube. In fact, the negative mass

mode may decay in straight sections. Growth per cycle of the resistive

wall instability, of course, increases linearly with L. Its growth rate is

so slow, however, that the path length could be increased by an order of

[ majnitude or more before the resistive wall instability became competitive
with the other modes,

The important stabilizing influences of electron enerqgy spread and
o transverse oscillations have been omitted from our calculations. Recent
estimates for betatrons with comparable parameters suggest that a 10%
spread in the injected beam electron energies is sufficient to suppress the
negative mass instability provided that the mean injection energy is
® greater than about 3 MeV.2-5 Additionally, research in support of the ATA

accelerator program predicts that employing occasional nonlinear focusing

elements to spread the electron transverse oscillation frequencies can

1imit beam breakup instability growth.l“ We remark also that varying the
@ resonant frequencies wg from gap to gap can cut the beam breakup growth
rate by N-!, provided the relative shifts are greater than Q-!,!S

15




Extensions to the present research naturally fall into two categories,
adding drifttube curvature and adding beam temperature. The former is rel-
atively easily accomplished by inserting the transport equations of Ref, 4
or 16 into BALTIC. This also would allow us to determine the influence of
straight drifttube sections on the negative mass instability. Treating
beam temperature beyond what has already been done probably requires numer-

fcal simulation,

.
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SUMMARY

Beam breakup and negative mass instability growth rates for a 1 kA, 40
MeV electron beam racetrack induction accelerator are computed. The device
is taken to have four acceleration gaps, each with 0.2 MeV applied voltage
and 15 ohm transverse impedence; the guide field is 2 kg. We find that the
total amplification of the beam breakup mode is limited to five e-foldings
provided that the cavity mode quality factor Q is 6. Thus, the negative
mass instability, which grows several times faster, is the dominant con-
sideration., However, we also find that the energy range over which the
negative mass 1instability occurs can be narrowed substantially by reducing
the guide field strength after the beam has been accelerated to about 12
MeV. This approach, coupled with beam thermal effects, not considered
here, probably is sufficient to )imit negative mass growth to acceptable
levels in the racetrack accelerator.

INTRODUCTION

High current racetrack induction accelerators and modified betatrons
are a subject of increasing interest as sources of high power electron
beams for free electron lasers, flash radiography, and other applications.
The racetrack induction accelerator geometry is illustrated schematically
in Figure 1., The beam is injected from a conventional pulsed diode beam
generator into the drifttube, is progressively accelerated as it repeti-
tively passes one or more induction modules, and then is extracted from the
accelerator for its intended use. Extraction may even be unnecessary for
microwave applications, because a slow-wave or rippled-magnetic-field cav-
ity can be inserted in a straight section of the drifttube.!

T e cr———— o K E A

e Most beam stability studies for high current recirculating devices
have dealt with the negative mass and resistive wall instabilities,2-5
Mowever, experience with linear induction accelerators suggests that beam
®
1
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® breakup due to interaction with the induction modules and other discontinu-
ities in the drifttube may be significant.®s7 The beam breakup instabil-
ity arises from a resonant coupling between beam transverse oscillations
and m=1 electromagnetic cavity modes localized to the acceleration gaps,

® resulting in large lateral displacements of the beam.®»? In this pape-
we present a linear dispersion relation describing both beam breakup and
negative mass instabilities, including their possible interaction, and
evaluate it for parameters of the proposed racetrack induction accelerator

® designed by the Naval Research Laboratory.!

The NRL device is based on the four module linear induction acceler-
ator developed by the National Bureau of Standards.}®? It is expected to ‘
o accelerate a 1 kA electron beam from 1 to 40 MeV in fifty cycles. The beam
and drifttube radii are 1 and 7 cm, respectively. The principle m=1 reson-
ance of the gaps has a frequency of 880 MHz, an impedence of 15 ohms, and
a quality factor (Q) of 60. Experience with the ETA linear induction
accelerator at Lawrence Livermore National Laboratory indicates that Q can

o
be greatly reduced, however, and we shall take Q=6 in our numerical work,!!
The NRL design includes a 2 kg axial magnetic field to maintain the beam
equilibrium and improve beam stability at low energies. Reducing or elim-

P inating this guide field at higher energies is nonetheless an interesting

; possibility. The stability analyses below consider both options.

DISPERSION RELATION

g For simplicity we represent the racetrack accelerator as a torus with
a single gap. These two approximations are conservative in that omitting
the straight sections of the racetrack and lumping the several gaps into
one overestimate negative mass and beam breakup growth, respectively. The

® desired dispersion relatfon is

[
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(nz-wrz + FL o+ wezvzx) (ﬂz-wzz + F /L) (1)
- Byv)? 2% = 0
with
=y L 8 + v (2 - oy 2
X\’v;wVe°'R-9 vm-?) ()
(3)

v = (1 + 2¢n a/rb) V/Y3

Here, 9 = w-fwg is the Doppler-shifted wave frequency, & is the toroidal
mode number, and wg = vg/R is the toroidal rotation frequency of the

beam. (The poloidal rotation frequency is assumed negligible.) The radial
and vertical betatron frequencies are
2 2,.2 2
w. = (1 -n- ng Ty /a%) wg
2 2,.2 2
W, (n - ng r, /2 ) wy
(4)

ng = nb/(2w6273)

with n the betatron index, np the beam density, v = nprp2/2

Budker's parameter, and y the beam energy. The drifttube major radius is

R, the drifttube minor radius is a, and the beam minor radius is rp.
L=2xR. The toroidal guide field strength is Bg; the betatron field

strength enters as B; = -wgy.
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In a high current betatron we? and wz?2 can be of either sign. The
beam is unstable, however, whenever
2 2 2 2
. “‘B = Uz ‘l".. /(BG/Y) (5)

is negative. To avoid this situation, as well as for simplicity, we take
n=1/2. The energy at which wg? = 0 typically is labeled the transition

® energy,

Yo, ~ (4 v R%a?)13 (6)

The gap response function F is defined as®

@
3
-E 2 - Zl wo 2 (7)
Y T u? + iw w /Q - wz Y
(] ()
@
where wg is the resonant frequency, Z_L/Q is the transverse impedence, and
Q is the quality factor. Setting F=0 in (1) recovers the high current bean
negative mass dispersion relation, The negative mass instability occurs
lo for all ¢ over a broad range of energies when y > \ For low 2 only,
one or two instability bands (often overlapping) also may exist when y <
Yere Three of the six beam modes (m=0 spacecharge, m=1 spacecharye,
and m=1 cyclotron; m is the poloidal mode number) have negative energy and
® so can couple unstably to the gap fields. Note that coupling in the m=0
spacecharge mode occurs only due to toroidal curvature. Choosing R=70 cm,
we find maximum coupling at g=13.
o
®
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LARGE B ANALYSIS

For the parameters considered here and toroidal mode numbers in the
vicinity of 13, the negative mass instability exists only beyond the trans-
ftion energy Yep ® 2.9. Just above the transition energy the insta-
bility 4s due solely to the interaction between the positive and negative
energy m=1 spacecharge modes, while at still higher energies the m=0 space-
charge modes also are involved. This change is readily visible in the neg-
ative mass instability growth rate, the dashed curve in Figure 2. Which
portion grows faster depends on circumstances.

q
Although the peak growth rate at lower energy is not readily deter-
mined analytically, the higher energy peak is easily shown to be
I = éz [2 s wg wg" v 12]1/3 (8) q

Instability ceases for

v > [6/3RB, v (1+21n a/ry)IM? (9)

here about 62.

In the absense of curvature, the beam breakup growth rate also is
& easily estimated. For Q not too large,®

vZL/Q
ro= el 51

(10)

-

Both m=1 negative energy modes grow at this rate when their frequencies
roughly match wg.
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The solid curves in Figure 2 show growth rates of the negative mass
and beam breakup instabilities combined. The negative mass results are
seen to be only weakly affected by the gap resonance. The m=1l cyclotron
and hybrid m=0/1 spacecharge modes have become unstable, however, with a
growth rate agreeing with (10) to within a factor of 1.5. These findings
are insensitive to small changes in the resonant frequency.

SMALL B ANALYSIS
Although modified betatron and racetrack induction accel -ator studies
usually assume a large toroidal guide field, large Bg is in fact needed
to provide a beam equilibrium only for y small. Reducing or perhaps elim-
inating By after the beam has been accelerated sufficiently has certain

advantages for stability, as we see below.

For Bg=0, the negative mass growth rate is approximately
I = ng- [z “’63 v Y2]1/3 (11)

This expression exceeds (8) whenever Bg/y > wg. However, the corres-
ponding high energy cutoff,

y > 36 v (1+ 2 2n a/ry) (12)

here 27.5, typically is much lower than (9). See the dashed curve in

N Figure 3.
y
' The beam breakup instability maximum growth rate is again readily
estimated, this time giving
¢
)
E v/Q
4 - 1 1
M Fo=wl o1y (14)
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Equation (13) exceeds (10) for Bg/y > 2wz;. The solid curves in Figure
3 show the effects of F#0. As in Figure 2, the negative mass instability
is only slightly modified by the gap; the beam breakup instability is des-
cribed reasonably well by (13).

A comparison of the two figures suggests that some reduction in tota)l
instability growth during acceleration can be achieved by rapidly decreas-
ing the guide field as the beam energy exceeds about 12 MeV.

RECOVERING “CONVENTIONAL" NEGATIVE MASS INSTABILITY BEHAVIUR FROM THE
HIGH-CURRENT-BETATRON DISPERSION RELATION

The preceding small Bg analysis predicts a high energy cutoff for
the negative mass instability in a high current betatron, while standard
derivations of negative mass growth, performed for a low current betatron,
lead to no such cutoff.!2,13The source of this apparent discrepancy,
namely the failure of the usual approximation

1 - wRE/p2 0 472 (14)

when ;y“ becomes large, has been noted previously.* To emphasize this
point, we here recover the accepted low current growth rate and show that
it too exhibits a high energy cutoff, where (14) breaks down. Interest-
ingly, a comparison of the new cutoff with (12), the high current limit,
indicates that practical betatron parameters exist for which the negative
mass instability does not occur at all at moderate toroidal mode numbers.

We begin by setting Bg (and F) to zero in (1).

2
92 - ur2+ w, 12 x =0 (15)
Next, we drop n? as = »11 compared to wr2,valid for m=0 spacecharge waves

in low current beams, and rearrange terms in the expression for .
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The conventional negative mass growth rate is obtained immediately by omit-
ting terms linear in o from (16), an approximation equivalent to invoking
(14).

Alternatively, (16) can be solved exactly.

2
- w
2 (1+v)8 -v%ve(Z-—g-zyz)z
w
r
[‘z 2“’92 22,4 \'1:21%221/2 17
v - Y ) + 1+ v ( - Y )] 1
L 7wl

Instability occurs whenever the argument of the square root is negative,

approximately
=4 Wy 2
2 ()
“p
Whe (18) is well satisfied, the criterion for (14) to be valid, the
desired growth rate is recovered.
o - w
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This derivation shows clearly the the negative mass instability at low cur-
rents is associated only with the m=0 spacecharge waves. At higher cur-
rents, for which g and wp become comparable, the m=1 spacecharge waves
also are involved, and the complete quartic equation must be solved to give
(11).

For the parameters of Table 1, the low current negative mass instabil-
ity has a cutoff at y = 7.0. Since the equilibrium fails below y = 10.5,
we see that the low current instability does not arise. Figure 4, a numer-
jcal solution of (1) for 350 A, illustrates growth in the low current
limit. The analytical result from (19) at y = 10.5 exceeds the numerical
by about 30%.

Rewriting inequality (18) as

1 4(1 - n)
Y> 5 T¥Zan alr, (20)

simplifies comparison with (12). Note that (20) predicts a narrow energy
bandwidth at high current, while (12) gives the opposite. A window, there-
fore, exists at moderate currents,

v (1 + 210 afrp) - 0.5-1.0 (21)

for which the energy range of the negative mass instability is minimal.
For instance, & 750 A, 4.5 MeV electron beam injected into a betatron or
racetrack accelerator with dimensions as in Table 1 exhibits no negative
mass instability whatsoever for £ < 6. Higher toroidal modes are likely to
be stabilized by energy spread?s* or nonlinear effects.!®
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TABLE 1. NOMINAL RACETRACK INDUCTION ACCELERATOR PARAMETERS

Path Lengths

Drifttube Radius

Beam Radius

Guide Field

Beam Current

Beam Energy

Number of Revolutions
Number of Gaps
Acceleration per Gap
Gap Resonant Frequency
Mode Quality Factor
Gap Transverse Impedance

Gap Width

Y £ W T o
Ty 4‘4; 5;\ N

X

L = 460 cm

R=7cm

a=1cm

Bg = 2 kg (we = 1.173 cm-1)
I=1KkKA (v = 0.0588)

U= 0.4 - 80 MeV (y = 1.5 - 80)
50

N=4

AU = 0,2 Mev (ay = 0.4)

880 MHz

Q = 60, 6

15 ohms (2179 = 0.5)

L =5cm

14
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APPENDIX F
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“Beam Breakup Instabilities in High Current Electron Beam Racetrack Induc-
tion Accelerators,” B. B. Godfrey and T. P. Hughes, IEEE Trans. Nuc. Sci.
NS-30, (1983).

"Analytic and Numerical Studies of the Modified Betatron," T. P. Hughes,
?. M. Campbell, and B, B. Godfrey, IEEE Trans. Nuc. Sci. NS-30, 2528
1983).

“Linear and Nonlinear Development of the Negative Mass Instability in a
Modified Betatron Accelerator,” T. P. Hughes, M, M, Campbell and B. B.
Godfrey, to be published in Proceedings of the Fifth International Confer-
ence on High Power Particle Beams.

*Improved Long-Wavelength Dispersion Relation for the Negative Mass Insta-
bility in High Current Conventional and Modified Betatrons," B. B. Godfrey,
T. P. Hughes and M, M. Campbell (AMRC-R-520, December 1983).

Presentations

"Beam Stability in the Modified Betatron Accelerator," B. B. Godfrey, M.
M. Campbell, and T, P. Hughes, APS Plasma Physics Meeting, New Orleans,
November 1982,

“Beam Breakup Instabilities in High Current Electron Beam Racetrack Induct-
fon Accelerators,” B. B. Godfrey and T. P. Hughes, Particle Accelerator
Conference, Santa Fe, March 1983,

*Analytic and Numerical Studies of the Modified Betatron," T. P. Hughes,
M. M, Campbell, and B. B. Godfrey, Particle Accelerator Conference, Santa
Fe, March 1983,

"High Current Betatrons (Theory and Computationszs” B. B. Godfrey, Univer-
sity of New Mexico Nuclear Engineering Seminar,

ril 1983.
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- Presentations (Cont'd)
1\
"Linear and Nonlinear Development of the Negative Mass Instability in a k
. Modified Toroidal Betatron Accelerator," T. P. Hughes, M. M. Campbell, and
3 B. B, Godfrey, Beams ‘83, San Francisco, September 1983.
N "Toroidal Self-Field Corrections to the Linear Dispersion Relation for the
Negative Mass Instability in a Modified Betatron," B, B, Godfrey, T. P.
X Hughes, and M., M. Campbell, APS Plasma Physics Meeting, Los Angeles, 1
o "~ November 1983,
: "Simulations and Theory of Negative Mass Instability in a Modified Beta-

X tron," T. P. Hughes, M, M, Campbell, and B. B. Godfrey, APS Plasma Physics
Meeting, Los Angeles, November 1983.
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